Quantitative determination of n-alkanethiols in air and in a blended gas mixture of methane with air by gas chromatography/differential mobility spectrometry

  • E. G. Nazarov
  • R. A. Miller
  • E. V. Krylov
  • J. A. Stone
  • G. A. Eiceman
Original Research


Mixtures of n-alkanethiols, in solution with equi-molar amounts from 0.5 to 360 ng per compound, were determined using gas chromatography (GC) with a differential mobility spectrometer, operated with a flow of air at ambient pressure, as the GC detector. A homologous series of n-alkanethiols with carbon number from two to six showed baseline resolution in the GC separation and positive and negative ion chromatograms were produced simultaneously for the alkanethiols. Differential mobility spectra showed compensation voltages characteristic of each alkanethiol and plots of ion intensity, retention time, and compensation voltage yield contour plots illustrating the second dimension of analytical selectivity provided by the detector. Another yet undeveloped dimension of analytical information was found in the dependence of mobility coefficients on electric field. Mass-analysis of ions from thiols showed a hydrogen abstracted ion, protonated monomers, and proton bound dimers. Linear ranges were narrow and the minimum detectable limits were ~1 ng. Response in positive polarity provided a ten-fold improvement in detection limits though spectra were more complex than for negative ions. In a methane-rich air atmosphere, intended to simulate ambient air or the detection of leaks from natural gas pipelines, the response to thiols with negative ions was not degraded by the methane up to 50% v/v, the highest level tested.


Alkanethiols Thiols Mercaptans Differential mobility spectrometry Gas chromatography 



We thank Drs. Stephen Coy and Quan Shi from Sionex Corp. for valuable discussion our experimental results and for assistance in data processing and presentation.


  1. 1.
    Smith OK, Williams GT (1939) Gas Age 84(3):14–16Google Scholar
  2. 2.
    Anon (1945) American Gas Journal 162(6):47–60Google Scholar
  3. 3.
    White DL, Reichardt FE (1949) Gas 25(6):38–39Google Scholar
  4. 4.
    Austin RR, Percy LE, Escher EE (1950) Gas 26(6):33–36Google Scholar
  5. 5.
    Brychta M, Rudolf J (1956) Paliva 36:307–311Google Scholar
  6. 6.
    Sadykhov ID, Korobtsova MI (1961) Azerbaidzhan Khim Zhur 3:131–135Google Scholar
  7. 7.
    Bednas ME, Russell DS (1967) J Gas Chrom 5(11):592–594Google Scholar
  8. 8.
    Spencer CF, Baumann F, Johnson JF (1958) Anal Chem 30:1473–1474CrossRefGoogle Scholar
  9. 9.
    Andreen BH, Kniebes DV, Tarman PB (1963) Inst Gas Technol Tech Rept 7:32Google Scholar
  10. 10.
    Tameesh AH, Bender AO, Sarkissian TM (1985) J Chromatogr 321(1):59–67CrossRefGoogle Scholar
  11. 11.
    Rygle KJ, Feulmer GP, Scheideman RF (1984) J Chromatogr Sci 22(11):514–519Google Scholar
  12. 12.
    Shearer RL, Poole EB, Nowalk JB (1993) J Chromatogr Sci 31(3):82–87Google Scholar
  13. 13.
    Sung NJ, Johnson SJ, Parrott SL (1994) J High Resolution Chromatogr 17(6):457–462CrossRefGoogle Scholar
  14. 14.
    Gaines KK, Chatham WH, Farwell SO (1990) J of High Resolution Chromatogr 13(8):585–586CrossRefGoogle Scholar
  15. 15.
    Gross GM, Grate JW, Synovec RE (2004) J Chromatogr A 1060(1–2):225–236Google Scholar
  16. 16.
    McCormack AJ, Sudhakar C, Levine SA, Patel MS, McCann JM (1994) LC-GC 30 12(1):32–35Google Scholar
  17. 17.
    Stein VB, Narang RS (1982) Anal Chem 54(6):991–992CrossRefGoogle Scholar
  18. 18.
    Lindqvist FJ (1989) High Resolution Chromatogr 12(9):628–631CrossRefGoogle Scholar
  19. 19.
    Di Sanzo FP, Bray W, Chawla BJ (1994) High Resolution Chromatogr 17(4):253–258Google Scholar
  20. 20.
    Tang H, Heaton P (1996) Int J Environmental Anal Chem 62(4):263–271CrossRefGoogle Scholar
  21. 21.
    Gangwal SK, Wagoner DE (1979) J. Chromatogr. Sci. 17(4):196–201Google Scholar
  22. 22.
    Kim K-H (2005) Environ Sci Technol 39(17):6765–6769CrossRefGoogle Scholar
  23. 23.
    Schiller RG, Bronsky RB (1977) J Chromatogr Sci 15(12):541–545Google Scholar
  24. 24.
    Firor RL, Quimby BD (2001) Agilent Technologies Application Note Number 5988-2426, AprilGoogle Scholar
  25. 25.
    Myung S-W, Huh S, Kim J, Kim Y, Kim M, Kim Y, Kim W, Kim B (1997) J Chromatogr A 791(1 + 2):367–370CrossRefGoogle Scholar
  26. 26.
    Kireev SV, Petrov NG, Podolyako EM, Shnyrev SL (2005) Laser Physics 15(5):744–750Google Scholar
  27. 27.
    Nazarov EG, Miller RA, Eiceman GA, Krylov EV (2002) Int J Ion Mobility Spectrom 5(3):76–81Google Scholar
  28. 28.
    Miller RA, Eiceman GA, Nazarov EG, King AT (2000) Sens. & Actuators B67, 300-6.Google Scholar
  29. 29.
    Anderson AG, Markoski KA, Shi Q, Coy SL, Krylov EV, Nazarov, EG (2008) In edited by Augustus Way Fountain III, Patrick J. Gardner (eds) “DMS-IMS2, GC-DMS, DMS-MS: DMS Hybrid Devices Combining Orthogonal Principles of Separation for Challenging Applications”, in Chemical, Biological, Radiological, Nuclear, and Explosives (CBRNE) Sensing IX, Proc. of SPIE Vol. 6954, 69540HGoogle Scholar
  30. 30.
    Eiceman GA, Karpas Z (2004) Ion Mobility Spectrometry, Chapter X. CRC Press, Boca Raton, FL?, pp 79–116Google Scholar
  31. 31.
    Kojiro DR, Cohen MJ, Stimac RM, Wernlund RF, Humphry DE, Takeuchi N (1991) Anal Chem 63:2295–2300CrossRefGoogle Scholar
  32. 32.
    Bell SE, Ewing RG, Eiceman GA, Karpas Z (1994) J American Soc Mass Spectrometry 5(3):177–185CrossRefGoogle Scholar
  33. 33.
    Buryakov IA, Krylov EV, Nazarov EG, Rasulev UKh (1993) Int J Mass Spectrom Ion Processes 128:143–148CrossRefGoogle Scholar
  34. 34.
    Krylov E, Nazarov EG, Miller RA, Eiceman GA (2002) J Phys Chem A 106(22):5437–5444CrossRefGoogle Scholar
  35. 35.
    Kolakowski BM, Mester Z (2007) Analyst 132(9):842–864CrossRefGoogle Scholar
  36. 36.
    Nazarov EG, Coy SL, Krylov EV, Miller RA, Eiceman GA (2006) Anal Chem 78:7697–7706CrossRefGoogle Scholar
  37. 37.
    Eiceman GA, Nazarov EG, Miller RA, Krylov EV, Zapata A (2002) Analyst 127:466–471CrossRefGoogle Scholar
  38. 38.
    Eiceman GA, Nazarov EG, Miller RA (2000) Int J Ion Mobility Spectrom 3(1):15–27Google Scholar
  39. 39.
    Viehland LA, Guevremont R, Purves RW, Barnett DA (2000) Int J Mass Spectrom 197:123–130CrossRefGoogle Scholar
  40. 40.
    Guevremont R, Barnett DA, Purves RW, Viehland LA (2001) J Chem Phys 14(3):10270–10277CrossRefGoogle Scholar
  41. 41.
    Arnold ST, Viggiano AA, Morris RA (1998) J Phys Chem A 102(45):8881–8887CrossRefGoogle Scholar
  42. 42.
    Krylova N, Krylov E, Eiceman GA, Stone JA (2003) J Phys Chem A 107(19):3648–3654CrossRefGoogle Scholar
  43. 43.
    Eiceman GA, Bergloff JF, Rodriguez JE, Munro W, Karpas Z (1999) J American Soc Mass Spectrom 10(11):1157–1165CrossRefGoogle Scholar
  44. 44.
    Technical Literature (2009) “Sionex Introduces the microAnalyzer Trace Chemical Detector System”, Sionex Corportation, Oct. 15, 2008, available at http://www.sionex.com/products/downloads/SIONEX-Introduces-the-microAnalyzer.pdf

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • E. G. Nazarov
    • 1
  • R. A. Miller
    • 1
  • E. V. Krylov
    • 1
  • J. A. Stone
    • 2
  • G. A. Eiceman
    • 3
  1. 1.SIONEX CorporationBedfordUSA
  2. 2.Department of ChemistryQueens UniversityKingstonCanada
  3. 3.New Mexico State UniversityLas CrucesUSA

Personalised recommendations