An implementable approach to obtain reproducible reduced ion mobility

  • Wolfgang Vautz
  • Bertram Bödeker
  • Jörg Ingo Baumbach
  • Sabine Bader
  • Michael Westhoff
  • Thorsten Perl
Original Research


Ion mobility spectrometry is increasingly in demand for medical applications and its potential for implementation in food quality and safety or process control suggest rising use of instruments in this field as well. All those samples are commonly extremely complex and mostly humid mixtures. Therefore, pre-separation techniques have to be applied. As ion mobility spectrometers with gas-chromatographic pre-separation acquire a huge amount of data, effective data processing and automated evaluation by comparison of detected peak pattern with data bases have to be utilised. This requires accurate on-line calibration of the instruments to guarantee reproducible results, in particular with respect to identification of an analyte by determination of its ion mobility and retention time. To reduce environmental and instrumental influence, the reduced ion mobility is used. It is derived from the drift time normalised to electric field, length of the drift region and to temperature and pressure of the drift gas (traditional method). All data required for this normalisation are afflicted with a particular error and thus leading to a deviation of the calculated ion mobility value. Furthermore, this traditional method enables a calculation of the reduced ion mobility only after the measurement. To avoid those errors and to enable on-line calibration of ion mobility, an instrument specific factor is implemented generally representing all relevant variables. This factor can be determined from an initial measurement of few spectra and can thereafter be applied on the following measurement. The application of this approach obtained reproducible reduced ion mobility values for positive and negative ions over a broad drift time range and for common variation of ambient conditions as well for varying instrument conditions such as electric fields respectively drift times and in different drift gases. Moreover, the reduced ion mobility is available already during the measurements with a significantly higher reliability and accuracy which was increased to a factor of 5 compared to the traditional ion mobility determination and enables an on-line identification of analytes for the first time.


Ion mobility spectrometry Reduced ion mobility Calibration Reproducibility Gas-chromatography Multi-capillary column Breath analysis Acetone 2-Hexanone Limonene 2-Heptanone 2-Nonanone 1-Octanol 2-Octanol 1-Decanol 2-Undecanol Diacetyl Pentanedione 


  1. 1.
    Eiceman GA, Karpas Z (2005) Ion mobility spectrometry. CRC, London, UKGoogle Scholar
  2. 2.
    Baumbach JI, Eiceman GA (1999) Ion mobility spectrometry: arriving on-site and moving beyond a low profile. Appl Spectrosc 53(9):338A–355ACrossRefGoogle Scholar
  3. 3.
    Borsdorf H, Eiceman GA (2006) Ion mobility spectrometry: principles and applications. Appl Spectrosc Rev 41:323–375CrossRefGoogle Scholar
  4. 4.
    Vautz W, Baumbach JI (2008) Exemplar application of multi-capillary column ion mobility spectrometry for biological medical purpose. Int J Ion Mobil Spectrom 11:35–41CrossRefGoogle Scholar
  5. 5.
    Westhoff M, Ruzsanyi V, Litterst P, Freitag L, Baumbach JI (2007) Ion mobility spectrometry—a new method for the fast detection of sarkoidosis in human breath?—Prelimany results of a feasibility study. J Physiol Pharmacol 58(5):739–751Google Scholar
  6. 6.
    Ruzsanyi V, Baumbach JI, Sielemann S, Litterst P, Westhoff M, Freitag L (2005) Detection of human metabolites using multi-capillary columns coupled to ion mobility spectrometers. J Chromatographia A 1084(1–2):145–151CrossRefGoogle Scholar
  7. 7.
    Ruzsanyi V, Sielemann S, Baumbach JI (2005) Analysis of human breath using IMS. Int J Ion Mobil Spectrom 8(1):5–7Google Scholar
  8. 8.
    Westhoff M, Litterst P, Freitag L, Urfer W, Bader S, Baumbach JI (2008) Ion mobility spectrometry for the detection of volatile organic compounds in exhaled breath of lung cancer patients—results of a pilot study. ThoraxGoogle Scholar
  9. 9.
    Davies AN, Baumbach JI (2008) Early lung cancer diagnostics by ion mobility spectrometry data handling. Spectrosc Eur 20:18–21Google Scholar
  10. 10.
    Bohrer BC, Merenbloom SI, Koeniger SL, Hilderbrand AE, Clemmer DE (2008) Biomolecule analysis by ion mobility spectrometry. Annu Rev Anal Chem 1:293–327CrossRefGoogle Scholar
  11. 11.
    Beegle LW, Kanik I, Matz L, Hill HH Jr (2002) Effects of drift-gas polarizability on glycine peptides in ion mobility spectrometry. Int J Mass Spectrom 216(3):257–268CrossRefGoogle Scholar
  12. 12.
    Ochoa ML, Harrington PB (2005) Chemometric studies for the characterization and differentiation of microorganisms using in situ derivatization and thermal desorption ion mobility spectrometry. Anal Chem 77:854–863CrossRefGoogle Scholar
  13. 13.
    Ogden ID, Strachan NJC (1993) Enumeration of escherichia coli in cooked and raw meats by ion mobility spectrometry. J Appl Bacteriol 74:402–405Google Scholar
  14. 14.
    Strachan NJC, Nicholson FJ, Ogden JC (1995) An automated sampling system using ion mobility spectrometry for the rapid detection of bacteria. Anal Chim Acta 313:63–67CrossRefGoogle Scholar
  15. 15.
    Zimmermann D, Hartmann M, Nolte J, Baumbach JI (2005) First Detection of metabolites of the colon cancer bell line SW 480 using MCC/IMS and GC/MS. Int J Ion Mobil Spectrom 8(2):1–4Google Scholar
  16. 16.
    Ruzsanyi V, Baumbach JI, Eiceman GA (2003) Detection of the mold markers using ion mobility spectrometry. Int J Ion Mobil Spectrom 6(2):53–57Google Scholar
  17. 17.
    Baumbach JI (2006) Process analysis using ion mobility spectrometry. Anal Bioanal Chem 384:1059–1070CrossRefGoogle Scholar
  18. 18.
    Vautz W, Baumbach JI (2008) Analysis of bio-processes using ion mobility spectrometry. Eng Life Sci 8(1):19–25CrossRefGoogle Scholar
  19. 19.
    Vautz W, Sielemann S, Baumbach JI (2004) Determination of terpenes in humid ambient air using ultraviolet ion mobility spectrometry. Anal Chim Acta 513:393–399CrossRefGoogle Scholar
  20. 20.
    Vautz W, Baumbach JI, Jung J (2006) Beer fermentation control using ion mobility spectrometry. J Inst Brew 112(2):157–164Google Scholar
  21. 21.
    Vautz W, Baumbach JI, Jung J (2004) Continuous monitoring of the fermentation of beer by ion mobility spectrometry. Int J Ion Mobil Spectrom 7(2):3–5Google Scholar
  22. 22.
    Vautz W, Zimmermann D, Hartmann M, Baumbach JI, Nolte J, Jung J (2006) Ion mobility spectrometry for food quality and safety. Food Addit Contam 23(11):1064–1073CrossRefGoogle Scholar
  23. 23.
    Bota GM, Harrington PB (2006) Direct detection of trimethylamine in meat food products using ion mobility spectrometry. Talanta 68(3):629–635CrossRefGoogle Scholar
  24. 24.
    Strachan NJC, Ogden ID (1993) A rapid method for the enumeration if coliforms in processed foods by ion mobility spectrometry. Lett Appl Microbiol 17:228–230CrossRefGoogle Scholar
  25. 25.
    Rauch PJ, Harrington P, Davis DM (1996) Ion mobility spectrometer measures food flavor freshness. Food Technol 50:83–85Google Scholar
  26. 26.
    Karpas Z, Tilman B, Gdalevsky R, Lorber A (2002) Determination of volatile biogenic amines in muscle food products by ion mobility spectrometry. Anal Chim Acta 463:155–163CrossRefGoogle Scholar
  27. 27.
    Holzapfel W, Budde K (1992) Ultratrace analysis for volatile organic compounds in semiconductor industry. Fresenius J Anal Chem 343:769–770CrossRefGoogle Scholar
  28. 28.
    Baumbach JI (2008) Ion mobility spectrometry in scientific literature and in the international journal for ion mobility spectrometry (1998–2007). Int J Ion Mobil Spectrom 11:3–12CrossRefGoogle Scholar
  29. 29.
    Bader S, Urfer W, Baumbach JI (2007) Reduction of ion mobility spectrometry data by clustering characteristic peak structures. J Chemometr 20(3–4):128–135Google Scholar
  30. 30.
    Bader S, Urfer W, Baumbach JI (2008) preprocessing of ion mobility spectra by lognormal detailing and wavelet transform. Int J Ion Mobil Spectrom 11:43–50CrossRefGoogle Scholar
  31. 31.
    Baumbach J, Bunkowski A, Lange S, Oberwahrenbrock T, Kleinboelting N, Rahmann S, Baumbach JI (2007) IMS2—an integrated medical software system for early lung cancer detection using ion mobility spectrometry data of human breath. J Integ Bioinf 4(3):75Google Scholar
  32. 32.
    Bader S, Urfer W, Baumbach JI (2005) Processing ion mobility spectrometry data to characterize group differences in a multiple class comparison. Int J Ion Mobil Spectrom 8:1–4Google Scholar
  33. 33.
    Michels A, Tombrink S, Vautz W, Miclea M, Franzke J (2007) Spectroscopic characterisation of a micro plasma source. Spectrochim Acta B 62:1208–1215CrossRefGoogle Scholar
  34. 34.
    Vautz W, Michels A, Franzke J (2008) Micro-plasma: a novel ionisation source for ion mobility spectrometry. Anal Bioanal Chem 391:2609–2615CrossRefGoogle Scholar
  35. 35.
    Eiceman GA, Nazarov EG, Stone JA (2003) Chemical standards in ion mobility spectrometry. Anal Chim Acta 493:185–194CrossRefGoogle Scholar
  36. 36.
    Bödeker B, Vautz W, Baumbach JI (2008) Peak finding and referencing in MCC/IMS—data. Int J Ion Mobil Spectrom 11:83–88CrossRefGoogle Scholar
  37. 37.
    Bödeker B, Vautz W, Baumbach JI (2008) Visualisation of MCC/IMS—data. Int J Ion Mobil Spectrom 11:77–82CrossRefGoogle Scholar
  38. 38.
    Bödeker B, Vautz W, Baumbach JI (2009) Peak comparison in MCC/IMS—data—searching for potential biomarkers in human breath data. Int J Ion Mobil Spectrom 11:89–93CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Wolfgang Vautz
    • 1
  • Bertram Bödeker
    • 1
  • Jörg Ingo Baumbach
    • 1
  • Sabine Bader
    • 1
    • 4
  • Michael Westhoff
    • 2
  • Thorsten Perl
    • 3
  1. 1.ISAS—Institute for Analytical SciencesDortmundGermany
  2. 2.Lung HospitalHemerGermany
  3. 3.Department of Anaesthesiology, Emergency and Intensive Care MedicineUniversity of GoettingenGoettingenGermany
  4. 4.Roche DiagnosticsPenzbergGermany

Personalised recommendations