Empirical prediction of reduced ion mobilities of secondary alcohols

  • Chandrasekhara Hariharan
  • Jörg Ingo Baumbach
  • Wolfgang Vautz
Original Research

Abstract

Ion Mobility Spectrometry is a powerful method for the rapid identification of gas-phase analytes and finds its usage in various fields including the sensitive analysis of extremely complex and humid mixtures such as human breath when additional pre-separation techniques are applied. The output data from an ion mobility spectrometer (IMS), equipped with a Multi-Capillary Column (MCC) for pre-separation, is a chromatogram of the signal intensity versus a particular retention time and a specific reduced ion mobility which are the characteristics of the detected analyte. Hence, it is important to have a database of analytes with both the values for comparison and identification of peaks in any IMS chromatogram. Commonly, such databases are collected by measurements of reference analytes. It is obvious that a prognosis of the values, without the time consuming and costly reference measurements, would be a considerable facilitation for a preliminary identification of unknowns and development of databases. In this study, a correlation between the reduced ion mobilities and the number of carbon atoms was found for secondary alcohols. The correlation was then used to predict the reduced ion mobilities of other analytes in the same homologous series. To verify the accuracy of the prognosis, the analytes were measured individually using a 63Ni-MCC-IMS and compared to the predicted values. The results of the prognosis show an accuracy higher than 99.5%.

Keywords

Ion mobility spectrometry Database Secondary alcohols Empirical prediction Reduced ion mobility Homologous series 

Notes

Acknowledgements

The financial support of the Bundesministerium für Bildung und Forschung and the Ministerium für Wissenschaft und Forschung des Landes Nordrhein-Westfalen is gratefully acknowledged. The dedicated work of Luzia Seifert and Susanne Krois, both technicians at ISAS, was indispensable for the success of the investigations. The work was funded partly by the project BAMOD (Breath-gas analysis for molecular-oriented detection of minimal diseases) of the European Union (LSHC-CT-2005-019031) and the high-tech strategy funds of the Federal Republic of Germany (Project Metabolit-01SF0716).

References

  1. 1.
    Louis RH, Hill HH (1990) Ion mobility spectrometry in analytical chemistry. Critical Reviews in Analytical Chemistry 21(5):321–355CrossRefGoogle Scholar
  2. 2.
    Eiceman G. A, Karpas Z (2005) Ion Mobility Spectrometry. Taylor and FrancisGoogle Scholar
  3. 3.
    Baumbach JI, Westhoff M (2006) Ion mobility spectrometry to detect lung cancer and airway infections. Spectroscopy Europe 18(6):22–27Google Scholar
  4. 4.
    Vautz W, Baumbach JI (2008) Exemplar application of multi-capillary column ion mobility spectrometry for biological and medical purpose. Int. Journal of Ion Mobility Spectrometry 11:35–41CrossRefGoogle Scholar
  5. 5.
    Ruzsanyi V, Baumbach JI, Eiceman GA (2003) Detection of the mold markers using ion mobility spectrometry. Int. Journal of Ion Mobility Spectrometry 6(2):53–57Google Scholar
  6. 6.
    Prasad S, Schmidt H, Lampen P, Wang M, Guth R, Rao JV, Smith GB, Eiceman GA (2006) Analysis of bacterial strains with pyrolysis-gas chromatography/differential mobility spectrometry. Analyst 131(11):1216–1225CrossRefGoogle Scholar
  7. 7.
    Chaim W, Karpas Z, Lorber A (2003) New technology for diagnosis of bacterial vaginosis. European J of Obstertics & gynecology and Reproductive biology 111:83–87CrossRefGoogle Scholar
  8. 8.
    Karpas Z, Tilman B, Gdalevsky R, Lorber A (2002) Determination of volatile biogenice amines in muscle food products by ion mobility spectrometry. 463:155–163Google Scholar
  9. 9.
    Prasad S, Pierce K, Schmidt H, Rao J, Güth R, Bader S, Synovec R, Smith GB, Eiceman GA (2007) Analysis of bacteria by pyrolysis gas chromatography–differential mobility spectrometry and isolation of chemical components with a dependence on growth temperature. Analyst 132:1031–1039CrossRefGoogle Scholar
  10. 10.
    Snyder AP, Shoff DB, Eiceman GA, Blyth DA, Parsons JA (2002) Detection of bacteria by ion mobility spectrometry. Anal Chem 63:526–529CrossRefGoogle Scholar
  11. 11.
    Harrington PB, Buxton TL, Chen G (2001) Classification of bacteria by thermal methylation hydrolysis by ion mobility spectrometry using SIMPLISMA and multi dimensional wavelet compression. Int. Journal of Ion Mobility Spectrometry 4(2):148–151Google Scholar
  12. 12.
    Shnayderman M, Mansfield B, Yip P, Clark HA, Krebs MD, Cohem SJ, Zeskind JE, Ryan ET, Dorkin HL, Callahan MV (2005) Species specific bacteria identification using differential mobility spectrometry and bioinformatics pattern recognition. Anal Chem 77:5930–5937CrossRefGoogle Scholar
  13. 13.
    Westhoff M, Ruzsanyi V, Litterst P, Freitag L, Baumbach JI (2007) Ion mobility spectrometry - a new method for the fast detection of Sarkoidose in human breath? - Preliminary results of a feasibility study. J. of Physiology and Pharmacology 58(5):739–751Google Scholar
  14. 14.
    Basanta M, Koimtzis T, Thomas CL (2006) Sampling and analysis of exhaled breath on human subjects with thermal desorption gas chromatography-differential mobility spectrometry. Int. journal of ion mobility spectrometry 9:45–49Google Scholar
  15. 15.
    Baumbach JI (2006) Process analysis using ion mobility spectrometry. Anal Bioanal Chem 384:1059–1070CrossRefGoogle Scholar
  16. 16.
    Sielemann S, Baumbach JI, Schmidt H, Pilzecker P (2002) Detection of alcohols using UV-ion mobility spectrometers. Int. Journal of Ion Mobility Spectrometry 5(3):7–10Google Scholar
  17. 17.
    Vautz W, Baumbach JI, Jung J (2006) Beer fermentation control using ion mobility spectrometry. Journal of the Institute of Brewing 112(2):157–164Google Scholar
  18. 18.
    Vautz W, Sielemann S, Baumbach JI (2004) Determination of terpenes in humid ambient air using ultraviolet ion mobility spectrometry. Anal Chim Acta 513:393–399CrossRefGoogle Scholar
  19. 19.
    Vautz W, Zimmermann D, Hartmann M, Baumbach JI, Nolte J, Jung J (2006) Ion mobility spectrometry for food quality and safety. Food Additives & Contaminants 23(11):1064–1073CrossRefGoogle Scholar
  20. 20.
    Walendzik G, Baumbach JI, Klockow D (2005) Coupling of SPME with MCC/UV-IMS as a tool for rapid on-site detection of ground water and surface water contamination. Anal Bioanal Chem 382:1842–1847CrossRefGoogle Scholar
  21. 21.
    Raatikainen O, Reinikainen V, Minkkinen P, Ritvanen T, Muje P, Pursiainen J, Hiltunen T, Hyvonen P, Wright A, Reinikainen S (2005) Multivariate modeling of fish freshness index based on ion mobility spectrometry measurements. Anal Chim Acta 544:128–134CrossRefGoogle Scholar
  22. 22.
    West C, Baron G, Minet JJ (2007) Detection of gunpowder stabilizers with ion mobility spectrometry. Forensic Science Int. 166:91–101CrossRefGoogle Scholar
  23. 23.
    Bödeker B, Vautz W, Baumbach JI (2008) Peak Finding and Referencing in MCC/IMS-Data. Int. J. for Ion Mobility Spectrometry 11:83–87CrossRefGoogle Scholar
  24. 24.
    Bödeker B, Vautz W, Baumbach JI (2008) Visualisation of MCC/IMS–Data. Int. J. for Ion Mobility Spectrometry 11:77–81CrossRefGoogle Scholar
  25. 25.
    Bödeker B, Vautz W, Baumbach JI (2008) Peak Comparison in MCC/IMS - Data - Searching for potential biomarkers in human breath data. Int. J. for Ion Mobility Spectrometry 11:89–93CrossRefGoogle Scholar
  26. 26.
    Vautz W, Bödeker B, Bader S, Baumbach JI (2008) Recommendation of a Standard Format for Data Sets from GC/IMS with Sensor-Controlled Sampling. Int. J. for Ion Mobility Spectrometry 11:71–76CrossRefGoogle Scholar
  27. 27.
    Baumbach J, Bunkowski A, Lange S, Oberwahrenbrock T, Kleinboelting N, Rahmann S, Baumbach JI (2007) IMS2 - An integrated medical software system for early lung cancer detection using ion mobility spectrometry data of human breath. Journal of Integrative Bioinformatics 4(3):75Google Scholar
  28. 28.
    Bader S, Urfer W, Baumbach JI (2008) Preprocessing of Ion Mobility Spectra by Lognormal Detailing and Wavelet Transform. Int. J. for Ion Mobility Spectrometry 11:43–50CrossRefGoogle Scholar
  29. 29.
    Harrington PB, Chen P (2005) Equilibrium modeling of ion mobility spectra. Int. Journal of ion mobility spectrometry 8:16–37Google Scholar
  30. 30.
    Cao LB, Harrington PB, Lui C (2004) Two-Dimensional nonlinear wavelet compression of ion mobility spectra of Chemical warfare agent simulants. Anal Chem 76:2859–2868CrossRefGoogle Scholar
  31. 31.
    Urbas AA, Harrington PB (2001) Two-dimensional wavelet compression of ion mobility spectra. Anal Chim Acta 446:393–412CrossRefGoogle Scholar
  32. 32.
    Harrington PD, Chen G, Urbas A (2001) Strategies for smarter chemical sensors. Int. journal for ion mobility spectrometry 4:26–30Google Scholar
  33. 33.
    Wesel MD, Jurs PC (1994) Prediction of reduced ion mobility constants from structural information using multiple linear regression analysis and computational neural networks. Anal Chem 66(15):2480–2487CrossRefGoogle Scholar
  34. 34.
    Wesel MD, Sutter JM, Jurs PC (1996) Prediction of reduced ion mobility constants of organic compounds from molecular structure. Anal Chem 68(23):4237–4243CrossRefGoogle Scholar
  35. 35.
    Stach J, Baumbach JI (2002) Ion mobility spectrometry - Basic elements and applications. Int. Journal of Ion Mobility Spectrometry 5(1):1–21Google Scholar
  36. 36.
    Bensch H, Leonhardt M (2002) Comparison of drift times of different IMS. Int. Journal of Ion Mobility Spectrometry 5(3):7–10Google Scholar
  37. 37.
    Xie Z, Sielemann S, Schmidt H, Li F, Baumbach JI (2002) Determination of acetone, 2-butanone, diethyl ketone and BTX using HSCC-UV-IMS. Anal Bioanal Chem 372:606–610CrossRefGoogle Scholar
  38. 38.
    McDaniel E, Mason E (1973) The Mobility and Diffusion of Ions in Gases. John Wiley and SonsGoogle Scholar
  39. 39.
    Ruzsanyi V, Baumbach JI, Sielemann S, Litterst P, Westhoff M, Freitag L (2005) Detection of human metabolites using multi-capillary columns coupled to ion mobility spectrometers. J. of Chromatography A 1084:145–151CrossRefGoogle Scholar
  40. 40.
    Baumbach JI, Eiceman GA (1999) Ion mobility spectrometry: Arriving on-site and moving beyond a low profile. Applied Spectroscopy 53(9):338–355CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Chandrasekhara Hariharan
    • 1
  • Jörg Ingo Baumbach
    • 1
  • Wolfgang Vautz
    • 1
  1. 1.ISAS — Institute for Analytical SciencesDortmundGermany

Personalised recommendations