Ageing International

, Volume 41, Issue 3, pp 265–282 | Cite as

The Aging as a Consequence of Diverse Biological Processes

  • Nicolas Coronel-Restrepo
  • Fabio Bonilla-Abadía
  • Andres Agualimpia
  • Andrés F. Echeverri
  • Fabio E. Ospina
  • Carlos A. Cañas
  • Gabriel J. Tobón
Article

Abstract

There are many theories that have proposed in order to understand the aging process, and the interpretation of these theories does not reflect an unified concept. With aging, the loss of functional and developmental capacity is evidenced, this reflecting a loss of operational ability of different cells, which are unavailable to function under the gene and environment pressure. Among the mechanisms of homeodynamics, the repair and synthesis of DNA, the capacity to detect and depure proteins, lipids, organelles and defective cells, amongst others, are all well described. The process of homeodynamics also works to maintain proper immune function that is capable of defending against pathogens and recognizing self-antigens in order to prevent the development of autoimmunity and to maintain a controlled inflammatory response. Based on this fundamental concept of homeodynamics, it has been possible to explain the mechanisms that contribute to the process of aging, in contrast to the physiological maintenance of the different pathways (e.g., DNA damage, DNA errors, free radicals, mitochondrial damage, injury/cell insult and theories of immunosenescence) and how these same maintenance pathways cause cells to respond to different stressors with apoptosis, senescence and repair. In this article, we review the theories of apoptosis, senescence and cell repair within the context of their role in the normal aging process.

Keywords

Aging Inflammation Apoptosis Immunosenescence Auto-inflammatory diseases 

Notes

Compliance with Ethical Standards

Conflict of Interest

Nicolas Coronel Restrepo declares that he has no conflict of interest. Fabio Bonilla Abadía declares that he has no conflict of interest. Andres Agualimpia declares that he has no conflict of interest. Andrés F. Echeverri declares that he has no conflict of interest. Fabio E. Ospina declares that he has no conflict of interest. Carlos A. Cañas declares that he has no conflict of interest. Gabriel J. Tobón declares that he has no conflict of interest.

Informed Consent

As there is no person or personal data appearing in the paper, there is no one from whom a permission should be obtained in order to publish personal data.

Ethical Treatment of Experimental Subjects (Animal and Human)

This article does not contain any studies, performed by any of the authors, with human or animal participants and, as such, did not require ethical approval.

References

  1. Baker, D. J., Wijshake, T., Tchkonia, T., LeBrasseur, N. K., Childs, B. J., van de Sluis, B., et al. (2011). Clearance of p16Ink4a-positive senescent cells delays ageing-associated disorders. Nature, 479(7372), 232–236.CrossRefGoogle Scholar
  2. Bjelakovic, G., Nikolova, D., Gluud, L. L., Simonetti, R. G., & Gluud, C. (2012). Antioxidant supplements for prevention of mortality in healthy participants and patients with various diseases. Cochrane Database of Systematic Reviews, 3, CD007176.Google Scholar
  3. Bordone, L., & Guarente, L. (2015). Calorie restriction, SIRT1 and metabolism: understanding longevity. Nature Reviews. Molecular Cell Biology, 6(4), 298–305.CrossRefGoogle Scholar
  4. Brett, J., Schmidt, A. M., Yan, S. D., Zou, Y. S., Weidman, E., Pinsky, D., et al. (1993). Survey of the distribution of a newly characterized receptor for advanced glycation end products in tissues. The American Journal of Pathology, 143(6), 1699–1712.Google Scholar
  5. Chavakis, T., Bierhaus, A., & Nawroth, P. P. (2004). RAGE (receptor for advanced glycation end products): a central player in the inflammatory response. Microbes Infect Inst Pasteur, 6(13), 1219–1225.CrossRefGoogle Scholar
  6. Chung, H. Y., Cesari, M., Anton, S., Marzetti, E., Giovannini, S., Seo, A. Y., et al. (2009). Molecular inflammation: underpinnings of aging and age-related diseases. Ageing Research Reviews, 8(1), 18–30.CrossRefGoogle Scholar
  7. Clegg, A., Young, J., Iliffe, S., Rikkert, M. O., & Rockwood, K. (2013). Frailty in elderly people. Lancet, 381(9868), 752–762.CrossRefGoogle Scholar
  8. Collier, C. A., Bruce, C. R., Smith, A. C., Lopaschuk, G., & Dyck, D. J. (2006). Metformin counters the insulin-induced suppression of fatty acid oxidation and stimulation of triacylglycerol storage in rodent skeletal muscle. American Journal of Physiology. Endocrinology and Metabolism, 291(1), E182–E189.CrossRefGoogle Scholar
  9. Deng, J. Y., Hsieh, P. S., Huang, J. P., Lu, L. S., & Hung, L. M. (2008). Activation of estrogen receptor is crucial for resveratrol-stimulating muscular glucose uptake via both insulin-dependent and -independent pathways. Diabetes, 57(7), 1814–1823.CrossRefGoogle Scholar
  10. Docherty, J. J., Sweet, T. J., Bailey, E., Faith, S. A., & Booth, T. (2006). Resveratrol inhibition of varicella-zoster virus replication in vitro. Antiviral Research, 72(3), 171–177.CrossRefGoogle Scholar
  11. Donath, M. Y., & Shoelson, S. E. (2011). Type 2 diabetes as an inflammatory disease. Nature Reviews. Immunology, 11(2), 98–107.CrossRefGoogle Scholar
  12. Eeles, E. M. P., White, S. V., O’Mahony, S. M., Bayer, A. J., & Hubbard, R. E. (2012). The impact of frailty and delirium on mortality in older inpatients. Age and Ageing, 41(3), 412–416.CrossRefGoogle Scholar
  13. Ettington, M. K. (2010). Physical immortality: a history and how to guide. The United States of America: Self Published.Google Scholar
  14. Fahlbusch, E., Vischer, L., Lochman, J. M., Mbiti, J. S., & Pelikan, J. (1998). The encyclopedia of Christianity. Michigan: Wm. B. Eerdmans Publishing Company.Google Scholar
  15. Fasth, A. E., Bjorkstrom, N. K., Anthoni, M., Malmberg, K. J., & Malmstrom, V. (2010). Activating NK-cell receptors co-stimulate CD4(+)CD28(−) T cells in patients with rheumatoid arthritis. European Journal of Immunology, 40(2), 378–387.CrossRefGoogle Scholar
  16. Fedarko, N. S. (2011). The biology of aging and frailty. Clinics in Geriatric Medicine, 27(1), 27–37.CrossRefGoogle Scholar
  17. Fontana, L., Meyer, T. E., Klein, S., & Holloszy, J. O. (2004). Long-term calorie restriction is highly effective in reducing the risk for atherosclerosis in humans. Proceedings of the National Academy of Sciences of the United States of America, 101(17), 6659–6663.CrossRefGoogle Scholar
  18. Fort, A. T. (2011). State of the art in anti-aging trends. Clinics in Geriatric Medicine, 27(4), 507–522.CrossRefGoogle Scholar
  19. Franceschi, C., Monti, D., Scarfí, M. R., Zeni, O., Temperani, P., Emilia, G., et al. (1992). Genomic instability and aging. Studies in centenarians (successful aging) and in patients with Down’s syndrome (accelerated aging). Annals of the New York Academy of Sciences, 663, 4–16.CrossRefGoogle Scholar
  20. Freund, A., Orjalo, A. V., Desprez, P. Y., & Campisi, J. (2010). Inflammatory networks during cellular senescence: causes and consequences. Trends in Molecular Medicine, 16(5), 238–246.CrossRefGoogle Scholar
  21. Fried, L. P., Xue, Q. L., Cappola, A. R., Ferrucci, L., Chaves, P., Varadhan, R., et al. (2009). Nonlinear multisystem physiological dysregulation associated with frailty in older women: implications for etiology and treatment. The Journals of Gerontology. Series A, Biological Sciences and Medical Sciences, 64(10), 1049–1057.CrossRefGoogle Scholar
  22. Gentilli, M., Mazoit, J. X., Bouaziz, H., Fletcher, D., Casper, R. F., Benhamou, D., et al. (2001). Resveratrol decreases hyperalgesia induced by carrageenan in the rat hind paw. Life Sciences, 68(11), 1317–1321.CrossRefGoogle Scholar
  23. Haanen, C., & Vermes, I. (1996). Apoptosis: programmed cell death in fetal development. European Journal of Obstetrics, Gynecology, and Reproductive Biology, 64(1), 129–133.CrossRefGoogle Scholar
  24. Hansson, G. K., & Libby, P. (2006). The immune response in atherosclerosis: a double-edged sword. Nature Reviews. Immunology, 6(7), 508–519.CrossRefGoogle Scholar
  25. Harman, D. (1956). Aging: a theory based on free radical and radiation chemistry. Journal of Gerontology, 11(3), 298–300.CrossRefGoogle Scholar
  26. Hayflick, L., & Moorhead, P. S. (1961). The serial cultivation of human diploid cell strains. Experimental Cell Research, 25, 585–621.CrossRefGoogle Scholar
  27. Herold, K., Moser, B., Chen, Y., Zeng, S., Yan, S. F., Ramasamy, R., et al. (2007). Receptor for advanced glycation end products (RAGE) in a dash to the rescue: inflammatory signals gone awry in the primal response to stress. Journal of Leukocyte Biology, 82(2), 204–212.CrossRefGoogle Scholar
  28. Hohensinner, P. J., Goronzy, J. J., & Weyand, C. M. (2011). Telomere dysfunction, autoimmunity and aging. Aging Dis, 2(6), 524–537.Google Scholar
  29. Howitz, K. T., Bitterman, K. J., Cohen, H. Y., Lamming, D. W., Lavu, S., Wood, J. G., et al. (2003). Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan. Nature, 425(6954), 191–196.CrossRefGoogle Scholar
  30. Hung, L. M., Chen, J. K., Huang, S. S., Lee, R. S., & Su, M. J. (2000). Cardioprotective effect of resveratrol, a natural antioxidant derived from grapes. Cardiovascular Research, 47(3), 549–555.CrossRefGoogle Scholar
  31. Johnson, T. E. (2006). Recent results: biomarkers of aging. Experimental Gerontology, 41(12), 1243–1246.CrossRefGoogle Scholar
  32. Karuppagounder, S. S., Pinto, J. T., Xu, H., Chen, H. L., Beal, M. F., & Gibson, G. E. (2009). Dietary supplementation with resveratrol reduces plaque pathology in a transgenic model of Alzheimer’s disease. Neurochemistry International, 54(2), 111–118.CrossRefGoogle Scholar
  33. Kirkwood, T. B., & Austad, S. N. (2000). Why do we age? Nature, 408(6809), 233–238.CrossRefGoogle Scholar
  34. Kuilman, T., Michaloglou, C., Mooi, W. J., & Peeper, D. S. (2010). The essence of senescence. Genes & Development, 24(22), 2463–2479.CrossRefGoogle Scholar
  35. Landenmark, H. K., Forgan, D. H., & Cockell, C. S. (2015). An estimate of the Total DNA in the biosphere. PLoS Biology. doi: 10.1371/journal.pbio.1002168.Google Scholar
  36. Leicester, H. M. (1971). The historical background of chemistry. New York, NY: Dover Publications Inc..Google Scholar
  37. Leone, S., Cornetta, T., Basso, E., & Cozzi, R. (2010). Resveratrol induces DNA double-strand breaks through human topoisomerase II interaction. Cancer Letters, 295(2), 167–172.CrossRefGoogle Scholar
  38. Lipsitz, L. A. (2002). Dynamics of stability: the physiologic basis of functional health and frailty. The Journals of Gerontology. Series A, Biological Sciences and Medical Sciences, 57(3), B115–B125.CrossRefGoogle Scholar
  39. Liuzzo, G., Goronzy, J. J., Yang, H., Kopecky, S. L., Holmes, D. R., Frye, F. R., et al. (2000). Monoclonal T-cell proliferation and plaque instability in acute coronary syndromes. Circulation, 101(25), 2883–2888.CrossRefGoogle Scholar
  40. Lloyd, D., Aon, M. A., & Cortassa, S. (2001). Why homeodynamics, not homeostasis? Scientific World Journal, 1, 133–145.CrossRefGoogle Scholar
  41. Minamino, T., Orimo, M., Shimizu, I., Kunieda, T., Yokoyama, M., Ito, T., et al. (2009). A crucial role for adipose tissue p53 in the regulation of insulin resistance. Nature Medicine, 15(9), 1082–1087.CrossRefGoogle Scholar
  42. Miyoshi, N., Oubrahim, H., Chock, P. B., & Stadtman, E. R. (2006). Age-dependent cell death and the role of ATP in hydrogen peroxide-induced apoptosis and necrosis. Proceedings of the National Academy of Sciences of the United States of America, 103(6), 1727–1731.CrossRefGoogle Scholar
  43. Mondello, C., & Scovassi, A. I. (2010). Apoptosis: a way to maintain healthy individuals. Sub-Cellular Biochemistry, 50, 307–323.CrossRefGoogle Scholar
  44. Muradian, K., & Schachtschabel, D. O. (2001). The role of apoptosis in aging and age-related disease: update. Z Für Gerontol Geriatr, 34(6), 441–446.CrossRefGoogle Scholar
  45. Neeper, M., Schmidt, A. M., Brett, J., Yan, S. D., Wang, F., Pan, Y. C., et al. (1992). Cloning and expression of a cell surface receptor for advanced glycosylation end products of proteins. The Journal of Biological Chemistry, 267(21), 14998–15004.Google Scholar
  46. Ohtani, N., Yamakoshi, K., Takahashi, A., & Hara, E. (2004). The p16INK4a-RB pathway: molecular link between cellular senescence and tumor suppression. The Journal of Medical Investigation, 51(3–4), 146–153.CrossRefGoogle Scholar
  47. Olshansky, S. J., Carnes, B. A., & Cassel, C. (1990). In search of methuselah: estimating the upper limits to human longevity. Science, 250(4981), 634–640.CrossRefGoogle Scholar
  48. Orlova, V. V., Choi, E. Y., Xie, C., Chavakis, E., Bierhaus, A., Ihanus, E., et al. (2007). A novel pathway of HMGB1-mediated inflammatory cell recruitment that requires Mac-1-integrin. The EMBO Journal, 26(4), 1129–1139.CrossRefGoogle Scholar
  49. Park, J. S., Svetkauskaite, D., He, Q., Kim, J. Y., Strassheim, D., Ishizaka, A., et al. (2004). Involvement of toll-like receptors 2 and 4 in cellular activation by high mobility group box 1 protein. The Journal of Biological Chemistry, 27(9), 7370–7377.CrossRefGoogle Scholar
  50. Park, J. S., Gamboni-Robertson, F., He, Q., Svetkauskaite, D., Kim, J. Y., Strassheim, D., et al. (2006). High mobility group box 1 protein interacts with multiple toll-like receptors. American Journal of Physiology. Cell Physiology, 290(3), C917–C924.CrossRefGoogle Scholar
  51. Phillips, D. R., & Kinsella, K. (2005). Global aging: the challenge of success. Wash Popul Ref Bur Popul Bull, 60(6), 5–42.Google Scholar
  52. Richter, C., Schweizer, M., Cossarizza, A., & Franceschi, C. (1996). Control of apoptosis by the cellular ATP level. FEBS Letters, 378(2), 107–110.CrossRefGoogle Scholar
  53. Ruiz-Mirazo, K., Peretó, J., & Moreno, A. (2004). A universal definition of life: autonomy and open-ended evolution. B Biosph Orig Life Evol, 34(3), 323–346.CrossRefGoogle Scholar
  54. Satoh, A., Brace, C. S., Ben-Josef, G., West, T., Wozniak, D. F., Holtzman, D. M., et al. (2010). SIRT1 promotes the central adaptive response to diet restriction through activation of the dorsomedial and lateral nuclei of the hypothalamus. Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 30(30), 10220–10232.CrossRefGoogle Scholar
  55. Stanfel, M. N., Shamieh, L. S., Kaeberlein, M., & Kennedy, B. K. (2009). The TOR pathway comes of age. Biochimica et Biophysica Acta, 1790(10), 1067–1074.CrossRefGoogle Scholar
  56. Stewart, T. M., Bhapkar, M., Das, S., Galan, K., Martin, C. K., McAdams, L., et al. (2013). Comprehensive Assessment of Long-term Effects of Reducing Intake of Energy Phase 2 (CALERIE Phase 2) screening and recruitment: methods and results. Contemporary Clinical Trials, 34(1), 10–20.CrossRefGoogle Scholar
  57. Tchkonia, T., Zhu, Y., van Deursen, J., Campisi, J., & Kirkland, J. L. (2013). Cellular senescence and the senescent secretory phenotype: therapeutic opportunities. The Journal of Clinical Investigation, 123(3), 966–972.CrossRefGoogle Scholar
  58. Valenzano, DR., Terzibasi, E., Genade, T., Cattaneo, A., Domenici, L., Cellerino, A. (2006). Resveratrol prolongs lifespan and retards the onset of age-related markers in a short-lived vertebrate, 16 (3), 296–300Google Scholar
  59. Vlassara, H. (2005). Advanced glycation in health and disease: role of the modern environment. Annals of the New York Academy of Sciences, 1043, 452–460.CrossRefGoogle Scholar
  60. Wallace, D. C. (2005). A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: a dawn for evolutionary medicine. Annual Review of Genetics, 39, 359–407.CrossRefGoogle Scholar
  61. Wang, M., Zhang, J., Jiang, L. Q., Spinetti, G., Pintus, G., Monticone, R., et al. (2007). Proinflammatory profile within the grossly normal aged human aortic wall. Hypertension, 50(1), 219–227.CrossRefGoogle Scholar
  62. Weng, N. P., Akbar, A., & Goronzy, J. (2009). CD28(−) T cells: their role in the age-associated decline of immune function. Trends in Immunology, 30(7), 306–312.CrossRefGoogle Scholar
  63. Weyand, C. M., Fulbright, J. W., & Goronzy, J. J. (2003). Immunosenescence, autoimmunity, and rheumatoid arthritis. Experimental Gerontology, 38(8), 833–841.CrossRefGoogle Scholar
  64. Winder, W. W., & Hardie, D. G. (1999). AMP-activated protein kinase, a metabolic master switch: possible roles in type 2 diabetes. The American Journal of Physiology, 277(1 Pt 1), E1–10.Google Scholar
  65. Witte, A. V., Fobker, M., Gellner, R., Knecht, S., & Flöel, A. (2009). Caloric restriction improves memory in elderly humans. Proceedings of the National Academy of Sciences of the United States of America, 106(4), 1255–1260.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Nicolas Coronel-Restrepo
    • 1
  • Fabio Bonilla-Abadía
    • 2
  • Andres Agualimpia
    • 2
  • Andrés F. Echeverri
    • 2
  • Fabio E. Ospina
    • 2
    • 3
  • Carlos A. Cañas
    • 2
  • Gabriel J. Tobón
    • 2
    • 4
  1. 1.Internal Medicine Unit, Fundación Valle del LiliCES University Medical SchoolCaliColombia
  2. 2.Rheumatology Unit, Fundación Valle del Lili, Medical School CaliICESI UniversityCaliColombia
  3. 3.Instituto de Investigaciones ClínicasFundación Valle del LiliCaliColombia
  4. 4.Laboratory of ImmunologyFundación Valle del LiliCaliColombia

Personalised recommendations