Advertisement

Towards Topological Mechanisms Underlying Experience Acquisition and Transmission in the Human Brain

  • Arturo Tozzi
  • James F. Peters
Regular Article

Abstract

Experience is a process of awareness and mastery of facts or events, gained through actual observation or second-hand knowledge. Recent findings reinforce the idea that a naturalized epistemological approach is needed to further advance our understanding of the nervous mechanisms underlying experience. This essay is an effort to build a coherent topological-based framework able to elucidate particular aspects of experience, e.g., how it is acquired by a single individual, transmitted to others and collectively stored in form of general ideas. Taking into account concepts from neuroscience, algebraic topology and Richard Avenarius’ philosophical analytical approach, we provide a scheme which is cast in an empirically testable fashion. In particular, we emphasize the foremost role of variants of the Borsuk-Ulam theorem, which tells us that, when a pair of opposite (antipodal) points on a sphere are mapped onto a single point in Euclidean space, the projection provides a description of both antipodal points. These antipodes stand for nervous functions and activities of the brain correlated with the mechanisms of acquisition and transmission of experience.

Keywords

Mind Brain Borsuk-ulam theorem Sensation 

Notes

Acknowledgements

The Authors would like to thank Chiara Russo Krauss and Thomas Feldges for commenting on an earlier version of this manuscript.

Compliance with Ethical Standards

Conflict of Interest

The Author Tozzi declares that he has no conflict of interest. The Author Peters declares that he/she has no conflict of interest.

Human Study

This article does not contain any studies with human participants or animals performed by any of the Authors.

Informed Consent

Not needed.

References

  1. Afraimovich, V., Tristan, I., Varona, P., & Rabinovich, M. (2013). Transient dynamics in complex systems: heteroclinic sequences with multidimensional unstable manifolds. Discontinuity, Nonlinearity and Complexity, 2(1), 21–41.CrossRefGoogle Scholar
  2. Arai, M., Brandt, V., & Dabaghian, Y. (2014). The effects of theta precession on spatial learning and simplicial complex dynamics in a topological model of the hippocampal spatial map. PLoS Computational Biology, 10(6), e1003651.CrossRefPubMedPubMedCentralGoogle Scholar
  3. Avenarius, R. (1908). Kritik Der Reinen Erfahrung von Richard Avenarius. Lepzig: C.R. Reisland.Google Scholar
  4. Barrett, L. F., & Simmons, W. K. (2015). Interoceptive predictions in the brain. Nature Reviews. Neuroscience, 16(7), 419–429.CrossRefPubMedPubMedCentralGoogle Scholar
  5. Barttfeld, P., Uhrig, L., Sitt, J. D., Sigman, M., Jarraya, B., & Dehaene, S. (2015). Signature of consciousness in the dynamics of resting-state brain activity. PNAS, 112(3), 887–892.CrossRefPubMedPubMedCentralGoogle Scholar
  6. Beggs, J. M., & Timme, N. (2012). Being critical of criticality in the brain. Frontiers in Physiology, 3, 163.CrossRefPubMedPubMedCentralGoogle Scholar
  7. Bengson, J. J., Kelley, T. A., Zhang, X., Wang, J.-L., & Mangun, G. R. (2014). Spontaneous neural fluctuations predict decisions to attend. Journal of Cognitive Neuroscience, 26(11), 2578–2584.CrossRefPubMedGoogle Scholar
  8. Benson, A. R., Gleich, D. F., & Leskovec, J. (2016). Higher-order organization of complex networks. Science, 353(6295), 163–166. doi: 10.1126/science.aad9029.CrossRefPubMedPubMedCentralGoogle Scholar
  9. Betzel, R. F., Byrge, L., He, Y., Goñi, J., Zuo, X.-N., & Sporns, O. (2014). Changes in structural and functional connectivity among resting-state networks across the human lifespan. NeuroImage, 2, 345–357.CrossRefGoogle Scholar
  10. Beyer, W. A., & Zardecki, A. (2004). The early history of the ham sandwich theorem. American Mathematical Monthly, 1, 58–61.CrossRefGoogle Scholar
  11. Borsuk, M. (1933). Drei sätze über die n-dimensional euklidische sphäre. Fundamenta Mathematicae XX, 177–190.Google Scholar
  12. Borsuk, M. (1958-1959). Concerning the classification of topological spaces from the standpoint of the theory of retracts. Fundamenta Mathematicae XLVI, 177–190.Google Scholar
  13. Borsuk, M. (1969). Fundamental retracts and extensions of fundamental sequences. Fundamenta Mathematicae, 1, 55–85.Google Scholar
  14. Cavell, S. (2002). Knowing and acknowledging must We mean what We say (pp. 238–266). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  15. Chen, Z., Gomperts, S. N., Yamamoto, J., & Wilson, M. A. (2014). Neural representation of spatial topology in the rodent hippocampus. Neural Computation, 26, 1–39.CrossRefPubMedGoogle Scholar
  16. Chicharro, D., & Ledberg, A. (2012). When two become one: the limits of causality analysis of brain dynamics. PloS One, 7(3), e32466. doi: 10.1371/journal.pone.0032466.CrossRefPubMedPubMedCentralGoogle Scholar
  17. Churchland, P. M. (2007). Neurophilosophy At Work. Cambridge Univ Pr. ISBN-10: 0521864720. ISBN-13: 978–0521864725.Google Scholar
  18. Collins, G. P. (2004). The shapes of space. Scientific American, 291, 94–103.CrossRefPubMedGoogle Scholar
  19. Dabaghian, Y., Mémoli, F., Frank, L., & Carlsson, G. (2012). A topological paradigm for hippocampal spatial map formation using persistent homology. PLoS Computational Biology, 8(8), e1002581.CrossRefPubMedPubMedCentralGoogle Scholar
  20. Dabaghian, Y., Brandt, V. L., & Frank, L. M. (2014). Reconceiving the hippocampal map as a topological template. eLife, 3, e03476.CrossRefPubMedPubMedCentralGoogle Scholar
  21. de Arcangelis, L., & Herrmann, H. J. (2010). Learning as a phenomenon occurring in a critical state. PNAS, 107, 3977–3981.CrossRefPubMedPubMedCentralGoogle Scholar
  22. Deco, G., & Jirsa, V. K. (2012). Ongoing cortical activity at rest: criticality, multistability, and ghost attractors. The Journal of Neuroscience, 32(10), 3366–3375.CrossRefPubMedGoogle Scholar
  23. Dodson, C. T. J., & Parker, P. E. (1997). A user’s guide to algebraic topology. Dordrecht: Kluwer.CrossRefGoogle Scholar
  24. Filmer, H. L., Dux, P. E., & Mattingley, J. B. (2014). Applications of transcranial direct current stimulation for understanding brain function. Trends in Neurosciences, 12, 742–753.CrossRefGoogle Scholar
  25. Friston, K. (2008). Hierarchical models in the brain. PLoS Computational Biology, 4, e1000211.CrossRefPubMedPubMedCentralGoogle Scholar
  26. Friston, K. (2010). The free-energy principle: a unified brain theory? Nature Reviews. Neuroscience, 11(2), 127–138.CrossRefPubMedGoogle Scholar
  27. Friston, K., Rigoli, F., Ognibene, D., Mathys, C., Fitzgerald, T., & Pezzulo, G. (2015). Active inference and epistemic value. Cognitive Neuroscience, 13, 1–28.CrossRefGoogle Scholar
  28. Gibson, J. J. (1950). The perception of the visual world. Greenwood: Greenwood Press, Westpost, Conn.Google Scholar
  29. Gibson, J. J. (1971). The information available in pictures. Leonardo, 4, 27–35.CrossRefGoogle Scholar
  30. Gibson, J. J. (1979). The theory of affordance in the ecological approach to visual perception. Hillsdale: Erlbaum.Google Scholar
  31. Gibson, J. J. (1986). The ecological approach to visual perception. Boston: Houghton-Mifflin.Google Scholar
  32. Giusti, C., Pastalkova, C., & Itskov. (2015). Clique topology reveals intrinsic geometric structure in neural correlations. Proceedings of the National Academy of Sciences of the United States of America, 112(44), 13455–13460. doi: 10.1073/pnas.1506407112.CrossRefPubMedPubMedCentralGoogle Scholar
  33. Gorgolewski, K. J., Lurie, D., Urchs, S., Kipping, J. A., Craddock, R. C., Milham, M. P., Margulies, D. S., & Smallwood, J. (2014). A correspondence between individual differences in the brain's intrinsic functional architecture and the content and form of self-generated thoughts. PloS One, 9(5), e97176.CrossRefPubMedPubMedCentralGoogle Scholar
  34. Grau, C., Ginhoux, R., Riera, A., Nguyen, T. L., Chauvat, H., Berg, M., Amengual, J. L., Pascual-Leone, A., & Ruffini, G. (2014). Conscious brain-to-brain communication in humans using non-invasive technologies. PloS One, 9(8), e105225. doi: 10.1371/journal.pone.0105225.CrossRefPubMedPubMedCentralGoogle Scholar
  35. Heft, H. (1997). The relevance of Gibson’s ecological approach to perception for environment-behavior studies. In G. T. Moore & R. W. Marans (Eds.), Advances in environment, behavior, and design. New York: Plenum Press.Google Scholar
  36. Hopfield, J. J. (1982). Neural networks and physical systems with emergent collective computational abilities. PNAS, 79, 2554–2558.CrossRefPubMedPubMedCentralGoogle Scholar
  37. Hume, D. (1739–40). A Treatise of Human Nature: Being an Attempt to introduce the experimental Method of Reasoning into Moral Subjects. Penguin Classics; New Ed edition (31 Oct. 1985).Google Scholar
  38. Izhikevich, E. M. (2010). Hybrid spiking models. Philosophical Transactions. Series A, Mathematical, Physical, and Engineering Sciences, 368(1930), 5061–5070.CrossRefPubMedGoogle Scholar
  39. Jirsa, V. K., Fuchs, A., & Kelso, J. A. S. (1998). Connecting cortical and behavioral dynamics: bimanual coordination. Neural Computation Archive, 10(8), 2019–2045.CrossRefGoogle Scholar
  40. Johnson-Laird, P. N. (2010). Mental models and human reasoning. PNAS, 107(43), 18243–18250.CrossRefPubMedPubMedCentralGoogle Scholar
  41. Kida, T., Tanaka, E., & Kakigi, R. (2016). Multi-dimensional dynamics of human electromagnetic brain activity. Frontiers in Human Neuroscience, 9, 713. doi: 10.3389/fnhum.2015.00713.CrossRefPubMedPubMedCentralGoogle Scholar
  42. Kleineberg, K.-K., Boguñá, M., Serrano, M. A., & Papadopoulos, F. (2016). Hidden geometric correlations in real multiplex networks. Nature Physics. doi: 10.1038/nphys3812.Google Scholar
  43. Körding, K. P., Beierholm, U., Ma, W. J., Quartz, S., Tenenbaum, J. B., & Shams, L. (2007). Causal inference in multisensory perception. PloS One, 2(9), e943.CrossRefPubMedPubMedCentralGoogle Scholar
  44. Lech, R. K., Güntürkün, O., & Suchan, B. (2016). An interplay of fusiform gyrus and hippocampus enables prototype- and exemplar-based category learning. Behavioural Brain Research. doi: 10.1016/j.bbr.2016.05.049.PubMedGoogle Scholar
  45. Lewin, K. (1935). A dynamic theory of personality. New York and London: McGraw_Hill Book Company, Inc.Google Scholar
  46. Lewin, K. (1936). Principles of Topological Psychology (F. Heider and G. M. Heider, transl.). New York: McGraw-Hill.CrossRefGoogle Scholar
  47. Libet, B., Gleason, C. A., Wright, E. W., & Pearl, D. K. (1983). Time of conscious intention to act in relation to onset of cerebral activity (readiness-potential). The unconscious initiation of a freely voluntary act. Brain, 106(Pt 3), 623–642.CrossRefPubMedGoogle Scholar
  48. Linkenkaer-Hansen, K., Nikouline, V. V., Palva, J. M., & Ilmoniemi, R. J. (2001). Long-range temporal correlations and scaling behavior in human brain oscillations. The Journal of Neuroscience, 21(4), 1370–1377.PubMedGoogle Scholar
  49. Luce, R. D., D'Zmura, M., Hoffman, D., Iverson, G. J., Romney, A. K. (eds) (1995) Geometric representations of perceptual phenomena. Papers in honor of Tarow Indow on his 70th birthday. Lawrence Erlbaum Associates.Google Scholar
  50. Luneburg, R. K. (1947). Mathematical analysis of binocular vision. Princeton: Princeton University Press.Google Scholar
  51. Marr D (1982) Vision. A computational investigation into the human representation and processing of visual information. New York: W. H. Freeman and Company.Google Scholar
  52. Marsaglia, G. (1972). Choosing a point from the surface of a sphere. Annals of Mathematical Statistics, 43(2), 645–646.CrossRefGoogle Scholar
  53. Matoušek, J. (2003). Using the Borsuk–ulam theorem. In Lectures on Topological Methods in Combinatorics and Geometry. Berlin Heidelberg: Springer-Verlag.Google Scholar
  54. Mazzucato, L., Fontanini, A., & La Camera, G. (2016). Stimuli reduce the dimensionality of cortical activity. Frontiers in Systems Neuroscience. doi: 10.3389/fnsys.2016.00011.PubMedPubMedCentralGoogle Scholar
  55. Milton, R., Babichev, A., & Dabaghian, Y. A. (2015). A topological approach to synaptic connectivity and spatial memory. BMC Neuroscience, 16(Suppl 1), P44.CrossRefPubMedCentralGoogle Scholar
  56. Mitroi-Symeonidis, F.-C. (2015). Convexity and sandwich theorems. European Journal of Research in Applied Sciences, 1, 9–11.Google Scholar
  57. Nieuwenhuys, R., Voogd, J., & van Huijzen, C. (2008). The human central nervous system. Heidelberg: Springer.CrossRefGoogle Scholar
  58. Ogasawara, Y. (2010). Sufficient conditions for the existence of a primitive chaotic behavior. Journal of the Physical Society of Japan, 79(2010), 15002.CrossRefGoogle Scholar
  59. Ogasawara, Y., & Oishi, S. (2012). Consideration of a primitive chaos. Journal of the Physical Society of Japan, 81(2012), 103001.CrossRefGoogle Scholar
  60. Ogasawara, Y., & Oishi, S. (2014). Characteristic spaces emerging from primitive chaos. Journal of the Physical Society of Japan, 83(2014), 014001.CrossRefGoogle Scholar
  61. Ogasawara, Y. (2015). A structure behind primitive chaos. Journal of the Physical Society of Japan, 84(2015), 064007.CrossRefGoogle Scholar
  62. Papo, D. (2014). Functional significance of complex fluctuations in brain activity: from resting state to cognitive neuroscience. Frontiers in Systems Neuroscience, 8, 112.CrossRefPubMedPubMedCentralGoogle Scholar
  63. Parise, C. V., Spence, C., & Ernst, M. O. (2011). When correlation implies causation in multisensory integration. Current Biology, 22(1), 46–49.CrossRefPubMedGoogle Scholar
  64. Peters, J. F. (2014). Topology of digital images. Visual pattern discovery in proximity spaces. In Intelligent Systems Reference Library. Berlin: Springer.Google Scholar
  65. Peters, J. F. (2016). Computational Proximity. Excursions in the Topology of Digital Images. Intelligent Systems Reference Library (p. 102). Switzerland: Springer Int. Pub. doi: 10.1007/978–3–319-30262-1.Google Scholar
  66. Peters, J. F., Tozzi, A., & Ramanna, S. (2016). Brain tissue tessellation shows absence of canonical microcircuits. Neuroscience Letters, 626, 99–105. doi: 10.1016/j.neulet.2016.03.052.CrossRefPubMedGoogle Scholar
  67. Popper, K. R., Eccles, J. C. (1977). The self and its brain. Berlin: Springer International. p. 425. ISBN 3–540–08307-3. You would agree, I think, that in our experience of the world everything comes to us through the senses [...].Google Scholar
  68. Robinson, P. A., Zhao, X., Aquino, K. M., Griffiths, J. D., Sarkar, S., & Mehta-Pandejee, G. (2016). Eigenmodes of brain activity: neural field theory predictions and comparison with experiment. NeuroImage. doi: 10.1016/j.neuroimage.2016.04.050.Google Scholar
  69. Rock, I. (1983). The logic of perception. Cambridge: MIT Press.Google Scholar
  70. Roldán, É., Martínez, I. A., Parrondo, J. M. R., & Petrov, D. (2014). Universal features in the energetics of symmetry breaking. Nature Physics, 10(6), 457–461. doi: 10.1038/nphys2940.
  71. Russo Krauss, C. (2013). Il sistema dell'esperienza pura. Firenze: Le Càriti.Google Scholar
  72. Russo Krauss, C. (2015). L'empiriocriticismo di Richard Avenarius tra psicofisiologia e teoria della consocenza. In R. Avenarius (Ed.), Il concetto umano di mondo. Morcelliana: Brescia.Google Scholar
  73. Scholz, J. P., Kelso, J. A. S., & Schöner, G. (1987). Nonequilibrium phase transitions in coordinated biological motion: critical slowing down and switching time. Physics Letters A, 123(8), 390–394. doi: 10.1016/0375-9601(87)90038-7.CrossRefGoogle Scholar
  74. Sengupta, B., Stemmler, M. B., & Friston, K. J. (2013). Information and efficiency in the nervous system--a synthesis. PLoS Computational Biology, 9(7), e1003157.CrossRefPubMedPubMedCentralGoogle Scholar
  75. Sengupta, B., Friston, K. J., & Penny, W. D. (2014). Efficient gradient computation for dynamical models. NeuroImage, 98, 521–527.CrossRefPubMedPubMedCentralGoogle Scholar
  76. Sengupta, B., Tozzi, A., Cooray, G. K., Douglas, P. K., & Friston, K. J. (2016). Towards a neuronal gauge theory. PLoS Biology, 14(3), e1002400.CrossRefPubMedPubMedCentralGoogle Scholar
  77. Simas, T., Chavez, M., Rodriguez, P. R., & Diaz-Guilera, A. (2015). An algebraic topological method for multimodal brain networks comparisons. Frontiers in Psychology, 6, 904. doi: 10.3389/fpsyg.2015.00904 .eCollection 2015CrossRefPubMedPubMedCentralGoogle Scholar
  78. Singer, W., & Lazar, A. (2016). Does the cerebral cortex exploit high-dimensional, non-linear dynamics for information processing? Frontiers in Computational Neuroscience. doi: 10.3389/fncom.2016.00099.PubMedPubMedCentralGoogle Scholar
  79. Stemmler, M., Mathis, A., & Herz, A. V. M. (2015). Connecting multiple spatial scales to decode the population activity of grid cells. Science Advances, 1, e1500816.CrossRefPubMedPubMedCentralGoogle Scholar
  80. Suppes, P. (2002). Representation and invariance of scientific structures. Stanford: Center for the Study of Language and Information Publication.Google Scholar
  81. Tognoli, E., & Kelso, J. A. (2014). Enlarging the scope: grasping brain complexity. Frontiers in Systems Neuroscience, 8, 122.CrossRefPubMedPubMedCentralGoogle Scholar
  82. Tononi, G. (2008). Consciousness as integrated information: a provisional manifesto. The Biological Bulletin, 215(3), 216–242.CrossRefPubMedGoogle Scholar
  83. Tozzi, A. (2016). Borsuk-Ulam Theorem Extended to Hyperbolic Spaces. In J. F. Peters (Ed.), Computational Proximity. Excursions in the Topology of Digital Images (pp. 169–171). doi: 10.1007/978–3–319-30262-1.Google Scholar
  84. Tozzi, A., & Peters, J. F. (2016a). Towards a fourth spatial dimension of brain activity. Cognitive Neurodynamics. doi: 10.1007/s11571-016-9379-z.PubMedGoogle Scholar
  85. Tozzi, A., & Peters, J. F. (2016b). A topological approach unveils system invariances and broken symmetries in the brain. Journal of Neuroscience Research. doi: 10.1002/jnr.23720.Google Scholar
  86. Tozzi, A., Fla, T., Peters, J. F. (2016). Building a minimum frustration framework for brain functions in long timescales. Journal of Neuroscience Research, 94(8), 702–716.Google Scholar
  87. Vuksanovic, V., & Hövel, P. (2014). Functional connectivity of distant cortical regions: role of remote synchronization and symmetry in interactions. NeuroImage, 97, 1–8.CrossRefPubMedGoogle Scholar
  88. Watanabe, T., Hirose, S., Wada, H., Imai, Y., Machida, T., Shirouzu, I., Konishi, S., Miyashita, Y., & Masuda, N. (2014). Energy landscapes of resting-state brain networks. Frontiers in Neuroinformatics, 8, 12.CrossRefPubMedPubMedCentralGoogle Scholar
  89. Weeks, J. R. (2002). The shape of space (IInd ed.). New York-Basel: Marcel Dekker, inc..Google Scholar
  90. Weyl, H. (1982). Symmetry. Princeton: Princeton University Press.Google Scholar
  91. Whitehead, A. N. (1919). An enquiry concerning the principles of natural knowledge. Cambridge: Cambridge University Press.Google Scholar
  92. Whitehead, A. N., & Russell, B. (1910). Principia mathematica (1st ed.). Cambridge: Cambridge University Press.Google Scholar
  93. Zeeman, E. C. (1962). The topology of the brain and visual perception. In M. K. Fort Jr. (Ed.), Topology of 3-manifolds and related topics (pp. 240–256). Upper Saddle River: Prentice-Hall.Google Scholar
  94. Zlotnik, A., Nagao, R., Kiss, I. Z., & Li, J. S. (2016). Phase-selective entrainment of nonlinear oscillator ensembles. Nature Communications, 7, 10788. doi: 10.1038/ncomms10788.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Center for Nonlinear ScienceUniversity of North TexasDentonUSA
  2. 2.Computational Intelligence LaboratoryUniversity of ManitobaWinnipegCanada
  3. 3.Department of Electrical and Computer EngineeringUniversity of ManitobaWinnipegCanada
  4. 4.Department of MathematicsAdıyaman UniversityAdıyamanTurkey

Personalised recommendations