Human Nature

, Volume 28, Issue 1, pp 39–52 | Cite as

The Driving Forces of Cultural Complexity

Neanderthals, Modern Humans, and the Question of Population Size
  • Laurel Fogarty
  • Joe Yuichiro Wakano
  • Marcus W. Feldman
  • Kenichi Aoki
Article

Abstract

The forces driving cultural accumulation in human populations, both modern and ancient, are hotly debated. Did genetic, demographic, or cognitive features of behaviorally modern humans (as opposed to, say, early modern humans or Neanderthals) allow culture to accumulate to its current, unprecedented levels of complexity? Theoretical explanations for patterns of accumulation often invoke demographic factors such as population size or density, whereas statistical analyses of variation in cultural complexity often point to the importance of environmental factors such as food stability, in determining cultural complexity. Here we use both an analytical model and an agent-based simulation model to show that a full understanding of the emergence of behavioral modernity, and the cultural evolution that has followed, depends on understanding and untangling the complex relationships among culture, genetically determined cognitive ability, and demographic history. For example, we show that a small but growing population could have a different number of cultural traits from a shrinking population with the same absolute number of individuals in some circumstances.

Keywords

Cultural complexity Population size Demography Cultural evolution Neanderthals Modern humans 

Notes

Acknowledgments

The authors would like to thank Alex Mesoudi and two anonymous referees for their helpful reviews of this paper. The work was supported by a Templeton Foundation grant to MWF, Monbukagakusho grant 22101004 to KA, Monbukagakusho grant 16H06412 to JYW, and a 2020 Science Fellowship to LF at UCL.

Supplementary material

12110_2016_9275_MOESM1_ESM.pdf (163 kb)
ESM (PDF 163 kb)

References

  1. Aoki, K. (2015). Modeling abrupt cultural regime shifts during the Paleolithic and stone age. Theoretical Population Biology, 100, 6–12.CrossRefGoogle Scholar
  2. Aoki, K., Lehmann, L., & Feldman, M. W. (2011). Rates of cultural change and patterns of cultural accumulation in stochastic models of social transmission. Theoretical Population Biology, 79(4), 192–202.CrossRefGoogle Scholar
  3. Atkinson, Q. D., Gray, R. D., & Drummond, A. J. (2008). mtDNA variation predicts population size in humans and reveals a major Southern Asian chapter in human prehistory. Molecular Biology and Evolution, 25(2), 468–474.CrossRefGoogle Scholar
  4. Briggs, A. W., Good, J. M., Green, R. E., Krause, J., Maricic, T., Stenzel, U., et al. (2009). Targeted retrieval and analysis of five Neandertal mtDNA genomes. Science, 325(5938), 318–321.CrossRefGoogle Scholar
  5. Caldwell, C. A., & Millen, A. E. (2010). Conservatism in laboratory microsocieties: unpredictable payoffs accentuate group-specific traditions. Evolution and Human Behavior, 31(2), 123–130.CrossRefGoogle Scholar
  6. Carja, O., Liberman, U., & Feldman, M. W. (2014). Evolution in changing environments: modifiers of mutation, recombination, and migration. Proceedings of the National Academy of Sciences, 111(50), 17935–17940.CrossRefGoogle Scholar
  7. Cavalli-Sforza, L., & Feldman, M. W. (1981). Cultural transmission and evolution. Princeton, NJ: Princeton University Press.Google Scholar
  8. Collard, M., Kemery, M., & Banks, S. (2005). Causes of toolkit variation among hunter-gatherers: a test of four competing hypotheses. Canadian Journal of Archaeology, 29(1), 1–19.Google Scholar
  9. Collard, M., Buchanan, B., & O’Brien, M. J. (2013). Population size as an explanation for patterns in the Paleolithic archaeological record. Current Anthropology, 54(S8), S388–S396.CrossRefGoogle Scholar
  10. Collard, M., Vaesen, K., Cosgrove, R. & Roebroeks, W. (2016). The empirical case against the “demographic turn” in Palaeolithic archaeology. Philosophical Transactions of the Royal Society of London, B: Biological Sciences, 371, 20150242. doi: 10.1098/rstb.2015.0242
  11. Derex, M., Beugin, M.-P., Godelle, B., & Raymond, M. (2013). Experimental evidence for the influence of group size on cultural complexity. Nature, 503(7476), 389–391.CrossRefGoogle Scholar
  12. Diamond, J. (1978). The Tasmanians: the longest isolation, the simplest technology. Nature, 273, 185–186.CrossRefGoogle Scholar
  13. Diamond, J. M. (1998). Guns, germs and steel: a short history of everybody for the last 13,000 years. London: Random House.Google Scholar
  14. Ewens, W. J. (2004). Mathematical population genetics: Theoretical introduction. Interdisciplinary Applied Mathematics 27. New York: Springer-Verlag.Google Scholar
  15. Fabre, V., Condemi, S., & Degioanni, A. (2009). Genetic evidence of geographical groups among Neanderthals. PloS One, 4(4). doi: 10.1371/journal.pone.0005151.
  16. Fogarty, L., Creanza, N., & Feldman, M. W. (2015a). Cultural evolutionary perspectives on creativity and human innovation. Trends in Ecology & Evolution, 30(12), 736–754.CrossRefGoogle Scholar
  17. Fogarty, L., Wakano, J. Y., Feldman, M. W., & Aoki, K. (2015b). Factors limiting the number of independent cultural traits that can be maintained in a population. In K. Aoki & A. Mesoudi (Eds.), Learning strategies and cultural evolution during the Paleolithic (pp. 9–21). Tokyo: Springer JapanGoogle Scholar
  18. Gaál, B., Pitchford, J. W., & Wood, J. A. (2010). Exact results for the evolution of stochastic switching in variable asymmetric environments. Genetics, 184(4), 1113–1119.CrossRefGoogle Scholar
  19. Gilpin, W., Feldman, M. W., & Aoki, K. (2016). An ecocultural model predicts Neanderthal extinction through competition with modern humans. Proceedings of the National Academy of Sciences of the United States of America, 113, 2134–2139.CrossRefGoogle Scholar
  20. Henrich, J. (2004). Demography and cultural evolution: how adaptive cultural processes can produce maladaptive losses: the Tasmanian case. American Antiquity, 69(2), 197–214.CrossRefGoogle Scholar
  21. Henrich, J., & Broesch, J. (2011). On the nature of cultural transmission networks: evidence from Fijian villages for adaptive learning biases. Philosophical Transactions of the Royal Society of London, B: Biological Sciences, 366(1567), 1139–1148.Google Scholar
  22. Hochberg, M. E. (2004). A theory of modern cultural shifts and meltdowns. Proceedings of the Royal Society of London, B: Biological Sciences, 271, S313–S316.Google Scholar
  23. Jones, R. (1977). The Tasmanian paradox. In R. V. S. Wright (Ed.), Stone tools as cultural markers: Change, evolution and complexity (pp. 189–204). Canberra: Australian Institute of Aboriginal Studies.Google Scholar
  24. Kempe, M., & Mesoudi, A. (2014). An experimental demonstration of the effect of group size on cultural accumulation. Evolution and Human Behavior, 35(4), 285–290.CrossRefGoogle Scholar
  25. Kempe, M., Lycett, S. J., & Mesoudi, A. (2014). From cultural traditions to cumulative culture: parameterizing the differences between human and nonhuman culture. Journal of Theoretical Biology, 359, 29–36.CrossRefGoogle Scholar
  26. Klein, R. G. (2000). Archeology and the evolution of human behavior. Evolutionary Anthropology, 9(1), 17–36.CrossRefGoogle Scholar
  27. Klein, R. G. (2008). Out of Africa and the evolution of human behavior. Evolutionary Anthropology, 17(6), 267–281.CrossRefGoogle Scholar
  28. Klein, R. G., & Steele, T. E. (2013). Archaeological shellfish size and later human evolution in Africa. Proceedings of the National Academy of Sciences of the United States of America, 110(27), 10910–10915.CrossRefGoogle Scholar
  29. Kline, M. A., & Boyd, R. (2010). Population size predicts technological complexity in Oceania. Proceedings of the Royal Society of London, B: Biological Sciences, 277(1693), 2559–2564.Google Scholar
  30. Kobayashi, Y., & Aoki, K. (2012). Innovativeness, population size and cumulative cultural evolution. Theoretical Population Biology, 82(1), 38–47.CrossRefGoogle Scholar
  31. Kussell, E., & Leibler, S. (2005). Phenotypic diversity, population growth, and information in fluctuating environments. Science, 309(5743), 2075–2078.CrossRefGoogle Scholar
  32. Lachmann, M., & Jablonka, E. (1996). The inheritance of phenotypes: an adaptation to fluctuating environments. Journal of Theoretical Biology, 181(1), 1–9.CrossRefGoogle Scholar
  33. Lalueza-Fox, C., Rosas, A., Estalrrich, A., Gigli, E., Campos, P. F., García-Tabernero, A., et al. (2011). Genetic evidence for patrilocal mating behavior among Neandertal groups. Proceedings of the National Academy of Sciences of the United States of America, 108(1), 250–253.CrossRefGoogle Scholar
  34. Lehmann, L., Aoki, K., & Feldman, M. W. (2011). On the number of independent cultural traits carried by individuals and populations. Philosophical Transactions of the Royal Society of London, B: Biological Sciences, 366(1563), 424–435.Google Scholar
  35. Liberman, U., Van Cleve, J., & Feldman, M. W. (2011). On the evolution of mutation in changing environments: recombination and phenotypic switching. Genetics, 187(3), 837–851.CrossRefGoogle Scholar
  36. Marquet, P. A., Santoro, C. M., Latorre, C., Standen, V. G., Abades, S. R., Rivadeneira, M. M., et al. (2012). Emergence of social complexity among coastal hunter-gatherers in the Atacama Desert of northern Chile. Proceedings of the National Academy of Sciences of the United States of America, 109(37), 14754–14760.CrossRefGoogle Scholar
  37. Mesoudi, A. (2011). Variable cultural acquisition costs constrain cumulative cultural evolution. PloS One, 6(3), 15–17. doi: 10.1371/journal.-pone.0018239.CrossRefGoogle Scholar
  38. Mithen, S. (1996). The prehistory of the mind. London: Thames and Hudson.Google Scholar
  39. Muthukrishna, M., Shulman, B. W., Vasilescu, V., & Henrich, J. (2013). Sociality influences cultural complexity. Proceedings of the Royal Society of London, B: Biological Sciences, 281(20132511).Google Scholar
  40. Powell, A., Shennan, S., & Thomas, M. G. (2009). Late Pleistocene demography and the appearance of modern human behavior. Science, 324(5932), 1298–1301.CrossRefGoogle Scholar
  41. Read, D. (2006). Tasmanian knowledge and skill: maladaptive imitation or adequate technology? American Antiquity, 71(1), 164–184.CrossRefGoogle Scholar
  42. Reader, S. M., & Laland, K. N. (2003). Animal innovation. Oxford: Oxford University Press.CrossRefGoogle Scholar
  43. Roberts, P., Henshilwood, C. S., Van Niekerk, K. L., Keene, P., Gledhill, A., Reynard, J., Badenhorst, S. & Lee-Thorp, J. (2016). Climate, environment and early human innovation: stable isotope and faunal proxy evidence from archaeological sites (98-59ka) in the southern Cape, South Africa. PLoS One, 11, 1–20.Google Scholar
  44. Rodríguez-Vidal, J., d’Errico, F., Pacheco, F. G., Blasco, R., Rosell, J., Jennings, R. P., et al. (2014). A rock engraving made by Neanderthals in Gibraltar. Proceedings of the National Academy of Sciences of the United States of America, 111(37), 13301–13306.CrossRefGoogle Scholar
  45. Shennan, S. (2001). Demography and cultural innovation: a model and its implications for the emergence of modern human culture. Cambridge Archaeological Journal, 11(01), 5–16.CrossRefGoogle Scholar
  46. Stiner, M. C., & Kuhn, S. L. (2006). Changes in the “connectedness” and resilience of Paleolithic societies in Mediterranean ecosystems. Human Ecology, 34(5), 693–712.CrossRefGoogle Scholar
  47. Strimling, P., Sjöstrand, J., Enquist, M., & Eriksson, K. (2009). Accumulation of independent cultural traits. Theoretical Population Biology, 76(2), 77–83.CrossRefGoogle Scholar
  48. Ziegler, M., Simon, M. H., Hall, I. R., Barker, S., Stringer, C., & Zahn, R. (2013). Development of Middle Stone Age innovation linked to rapid climate change. Nature Communications, 4(May), 1905. doi: 10.1038/ncomms2897.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Laurel Fogarty
    • 1
    • 2
  • Joe Yuichiro Wakano
    • 3
  • Marcus W. Feldman
    • 1
  • Kenichi Aoki
    • 4
  1. 1.Department of BiologyStanford UniversityStanfordUSA
  2. 2.CoMPLEXUniversity College LondonLondonUK
  3. 3.Meiji Institute for Advanced Study of Mathematical SciencesMeiji UniversityTokyoJapan
  4. 4.Organization for the Strategic Coordination of Research and Intellectual PropertiesMeiji UniversityTokyoJapan

Personalised recommendations