Human Nature

, Volume 25, Issue 1, pp 6–27 | Cite as

The Insectan Apes

  • Bernard CrespiEmail author


I present evidence that humans have evolved convergently to social insects with regard to a large suite of social, ecological, and reproductive phenotypes. Convergences between humans and social insects include: (1) groups with genetically and environmentally defined structures; (2) extensive divisions of labor; (3) specialization of a relatively restricted set of females for reproduction, with enhanced fertility; (4) extensive extramaternal care; (5) within-group food sharing; (6) generalized diets composed of high-nutrient-density food; (7) solicitous juveniles, but high rates of infanticide; (8) ecological dominance; (9) enhanced colonizing abilities; and (10) collective, cooperative decision-making. Most of these convergent phenotypic adaptations stem from reorganization of key life-history trade-offs due to behavioral, physiological, and life-historical specializations. Despite their extensive socioreproductive overlap with social insects, humans differ with regard to the central aspect of eusociality: reproductive division of labor. This difference may be underpinned by the high energetic costs of producing offspring with large brains.


Eusociality Cooperative breeding Social insects Convergence 



I am grateful to L. Betzig, A. Bourke, F. de Ubeda, P. Ellison, S. Frank, E. Hagen, K. Hill, A. Mooers, P. Nepomnaschy, T. Schwander, B. Strassmann, and P. Turke for helpful comments, and to L. Betzig and J. Lancaster for inviting me to contribute this article. I thank the Natural Sciences and Engineering Research Council of Canada for financial support and S. Read for technical assistance.


  1. Alexander, R. D., Noonan, K. M., & Crespi, B. J. (1991). The evolution of eusociality. In P. W. Sherman, J. U. M. Jarvis, & R. D. Alexander (Eds.), The biology of the naked mole rat (pp. 3–44). Princeton: Princeton University Press.Google Scholar
  2. Barrett, R., Kuzawa, C. W., McDade, T., & Armelagos, G. J. (1998). Emerging and re-emerging infectious diseases: the third epidemiologic transition. Annual Review of Anthropology, 27, 247–271.CrossRefGoogle Scholar
  3. Bell, M. B., Nichols, H. J., Gilchrist, J. S., Cant, M. A., & Hodge, S. J. (2012). The cost of dominance: suppressing subordinate reproduction affects the reproductive success of dominant female banded mongooses. Proceedings of the Royal Society, Series B: Biological Sciences, 279(1728), 619–624.Google Scholar
  4. Berletch, J. B., Yang, F., Xu, J., Carrel, L., & Disteche, C. M. (2011). Genes that escape from X inactivation. Human Genetics, 130(2), 237–245.CrossRefGoogle Scholar
  5. Bignell, D. E., Roisin, Y., & Lo, N. (2011). Biology of termites: A modern synthesis. Dordrecht: Springer.CrossRefGoogle Scholar
  6. Boomsma, J. J. (2009). Lifetime monogamy and the evolution of eusociality. Philosophical Transactions of the Royal Society, Series B: Biological Sciences, 364(1533), 3191–3207.Google Scholar
  7. Boomsma, J. J., & Ratnieks, F. L. W. (1996). Paternity in eusocial Hymenoptera. Philosophical Transactions of the Royal Society, Series B: Biological Sciences, 351(1342), 947–975.Google Scholar
  8. Bourke, A. F. G. (1999). Colony size, social complexity and reproductive conflict in social insects. Journal of Evolutionary Biology, 12(2), 245–257.CrossRefGoogle Scholar
  9. Bowles, S. (2006). Group competition, reproductive leveling, and the evolution of human altruism. Science, 314(5805), 1569–1572.CrossRefGoogle Scholar
  10. Bowles, S. (2009). Did warfare among ancestral hunter-gatherers affect the evolution of human social behaviors? Science, 324(5932), 1293–1298.CrossRefGoogle Scholar
  11. Bowles, S. (2012). Warriors, levelers, and the role of conflict in human social evolution. Science, 336(6083), 876–879.CrossRefGoogle Scholar
  12. Boyd, R., & Richerson, P. J. (1987). The evolution of ethnic markers. Cultural Anthropology, 2, 65–79.CrossRefGoogle Scholar
  13. Cant, M. A., & Johnstone, R. A. (1999). Costly young and reproductive skew in animal societies. Behavioral Ecology, 10, 178–184.CrossRefGoogle Scholar
  14. Cant, M. A., & Johnstone, R. A. (2008). Reproductive conflict and the separation of reproductive generations in humans. Proceedings of the National Academy of Sciences of the United States of America, 105(14), 5332–5336.CrossRefGoogle Scholar
  15. Cant, M. A., Johnstone, R. A., & Russell, A. F. (2009). Reproductive conflict and the evolution of menopause. In R. Hager & C. B. Jones (Eds.), Reproductive skew in vertebrates: Proximate and ultimate causes (pp. 24–50). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  16. Chagnon, N. A. (1988). Life histories, blood revenge, and warfare in a tribal population. Science, 239(4843), 985–992.CrossRefGoogle Scholar
  17. Clutton-Brock, T. H. (2009). Structure and function in mammalian societies. Philosophical Transactions of the Royal Society, Series B: Biological Sciences, 364(1533), 3229–3242.Google Scholar
  18. Clutton-Brock, T. H., Hodge, S. J., Flower, T. P., Spong, G. F., & Young, A. J. (2010). Adaptive suppression of subordinate reproduction in cooperative mammals. American Naturalist, 176(5), 664–673.CrossRefGoogle Scholar
  19. Cordts, E. B., Christofolini, D. M., Dos Santos, A. A., Bianco, B., & Barbosa, C. P. (2011). Genetic aspects of premature ovarian failure: a literature review. Archives of Gynecology and Obstetrics, 283(3), 635–643.CrossRefGoogle Scholar
  20. Crespi, B. J. (1992). Cannibalism and trophic eggs in subsocial and eusocial insects. In M. A. Elgar & B. J. Crespi (Eds.), Cannibalism: Ecology and evolution among diverse taxa (pp. 177–213). Oxford: Oxford University Press.Google Scholar
  21. Crespi, B. J. (1994). Three conditions for the evolutions of eusociality: are they sufficient? Insectes Sociaux, 41, 395–400.CrossRefGoogle Scholar
  22. Crespi, B. J. (2008). Turner syndrome and the evolution of human sexual dimorphism. Evolutionary Applications, 1, 449–461.CrossRefGoogle Scholar
  23. Crespi, B. J. (2009). Social conflict resolution, life history, and the reconstruction of skew. In R. Hager & C. B. Jones (Eds.), Reproductive skew in vertebrates: Proximate and ultimate causes (pp. 480–507). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  24. Crespi, B. J. (2011). The evolutionary biology of child health. Proceedings of the Royal Society, Series B: Biological Sciences, 278(1711), 1441–1449.Google Scholar
  25. Crespi, B. J., & Yanega, D. (1995). The definition of eusociality. Behavioral Ecology, 6, 109–115.CrossRefGoogle Scholar
  26. Crespi, B. J., Morris, D. C., & Mound, L. A. (2004). Evolution of ecological and behavioural diversity: Australian acacia thrips as model organisms. Canberra: Australian Biological Resources Study & CSIRO Entomology.Google Scholar
  27. Crespi, B. J., Summers, K., & Dorus, S. (2009). Genomic sister-disorders of neurodevelopment: an evolutionary approach. Evolutionary Applications, 2, 81–100.CrossRefGoogle Scholar
  28. Cronin, A. L., Molet, M., Doums, C., Monnin, T., & Peeters, C. (2013). Recurrent evolution of dependent colony foundation across eusocial insects. Annual Review of Entomology, 58, 37–55.CrossRefGoogle Scholar
  29. Cronk, L. (2007). Boy or girl: gender preferences from a Darwinian point of view. Reproductive BioMedicine Online, 15(Supplement 2), 23–32.CrossRefGoogle Scholar
  30. Crozier, R. H., & Pamilo, P. (1996). Evolution of social insect colonies: Sex allocation and kin-selection. Oxford: Oxford University Press.Google Scholar
  31. Curtis, V. A. (2007). Dirt, disgust and disease: a natural history of hygiene. Journal of Epidemiology and Community Health, 61(8), 660–664.CrossRefGoogle Scholar
  32. Dennen, J.M.G. van der. (2005). Nonhuman intergroup agonistic behavior and ‘warfare’. University of Groningen. Faculty of Law,, urn:nbn:nl:ui:11-dbi/4357a9830ee93.
  33. Diamond, J. (2005). Collapse: How societies choose to fail or succeed. New York: Penguin.Google Scholar
  34. Dobata, S., Sasaki, T., Mori, H., Hasegawa, E., Shimada, M., & Tsuji, K. (2009). Cheater genotypes in the parthenogenetic ant Pristomyrmex punctatus. Proceedings of the Royal Society, Series B: Biological Sciences, 276(1656), 567–574.Google Scholar
  35. Ellison, P. T. (2003). On fertile ground: A natural history of human reproduction. Cambridge: Harvard University Press.Google Scholar
  36. Fefferman, N. H., Traniello, J. F. A., Rosengaus, R. B., & Calleri, D. V., II. (2007). Disease prevention and resistance in social insects: modeling the survival consequences of immunity, hygienic behavior, and colony organization. Behavioral Ecology and Sociobiology, 61, 565–577.CrossRefGoogle Scholar
  37. Foster, K. R., & Ratnieks, F. L. W. (2005). A new eusocial vertebrate? Trends in Ecology and Evolution, 20(7), 363–364.CrossRefGoogle Scholar
  38. Fox, M., Sear, R., Beise, J., Ragsdale, G., Voland, E., & Knapp, L. A. (2010). Grandma plays favourites: X-chromosome relatedness and sex-specific childhood mortality. Proceedings of the Royal Society, Series B: Biological Sciences, 277(1681), 567–573.Google Scholar
  39. Frank, S. A. (2003). Repression of competition and the evolution of cooperation. Evolution, 57, 693–705.Google Scholar
  40. Frank, S. A., & Crespi, B. J. (2011). Pathology from evolutionary conflict, with a theory of X chromosome versus autosome conflict over sexually antagonistic traits. Proceedings of the National Academy of Sciences of the United States of America, 108(Supplement 2), 10886–10893.CrossRefGoogle Scholar
  41. Fromhage, L., & Kokko, H. (2011). Monogamy and haplodiploidy act in synergy to promote the evolution of eusociality. Nature Communications, 2(397), doi: 10.1038/ncomms/1410.
  42. Gadagkar, R. (1991). Demographic predisposition to the evolution of eusociality: a hierarchy of models. Proceedings of the National Academy of Sciences of the United States of America, 88, 10993–10997.CrossRefGoogle Scholar
  43. Gardner, A., & West, S. A. (2004). Cooperation and punishment, especially in humans. American Naturalist, 164(6), 753–764.CrossRefGoogle Scholar
  44. Gardner, A., Alpedrinha, J., & West, S. A. (2012). Haplodiploidy and the evolution of eusociality: split sex ratios. American Naturalist, 179(2), 240–256.CrossRefGoogle Scholar
  45. Gautrais, J., Theraulaz, G., Deneubourgz, J. L., & Anderson, C. (2002). Emergent polyethism as a consequence of increased colony size in insect societies. Journal of Theoretical Biology, 215, 363–373.CrossRefGoogle Scholar
  46. Gibson, M. A., & Gurmu, E. (2011). Land inheritance establishes sibling competition for marriage and reproduction in rural Ethiopia. Proceedings of the National Academy of Sciences of the United States of America, 108(6), 2200–2204.CrossRefGoogle Scholar
  47. Gotwald, W. H., Jr. (1995). Army ants: The biology of social predation. Ithaca: Cornell University Press.Google Scholar
  48. Graves, J. A. M., Koina, E., & Sankovic, N. (2006). How the gene content of human sex chromosomes evolved. Current Opinion in Genetics & Development, 16(3), 219–224.CrossRefGoogle Scholar
  49. Grüter, C., Menezes, C., Imperatriz-Fonseca, V. L., & Ratnieks, F. L. (2012). A morphologically specialized soldier caste improves colony defense in a neotropical eusocial bee. Proceedings of the National Academy of Sciences of the United States of America, 109(4), 1182–1186.CrossRefGoogle Scholar
  50. Gurven, M. (2004). To give and to give not: the behavioral ecology of human food transfers. Behavioral and Brain Sciences, 27(4), 543–583.Google Scholar
  51. Gurven, M., & Hill, K. (2009). Why do men hunt? A reevaluation of “man the hunter” and the sexual division of labor. Current Anthropology, 50, 51–74.CrossRefGoogle Scholar
  52. Hagen, E. H., & Barrett, H. C. (2009). Cooperative breeding and adolescent siblings: evidence for the ecological constraints model? Current Anthropology, 50, 727–737.CrossRefGoogle Scholar
  53. Haig, D. (2006). Intragenomic politics. Cytogenetic and Genome Research, 113, 68–74.CrossRefGoogle Scholar
  54. Haig, D. (2010). Transfers and transitions: parent-offspring conflict, genomic imprinting, and the evolution of human life history. Proceedings of the National Academy of Sciences of the United States of America, 107(Supplement 1), 1731–1735.CrossRefGoogle Scholar
  55. Haig, D., & Wharton, R. (2003). Prader-Willi syndrome and the evolution of human childhood. American Journal of Human Biology, 15(3), 320–329.CrossRefGoogle Scholar
  56. Hamilton, W. D. (1966). The moulding of senescence by natural selection. Journal of Theoretical Biology, 12(1), 12–45.CrossRefGoogle Scholar
  57. Harpending, H. (2002). Kinship and population subdivision. Population and Environment, 24(2), 141–147.CrossRefGoogle Scholar
  58. Hausfater, G., & Hrdy, S. B. (Eds.). (1984). Infanticide: Comparative and evolutionary perspectives. New York: Aldine.Google Scholar
  59. He, C., Kraft, P., Chasman, D. I., Buring, J. E., Chen, C., Hankinson, S. E., et al. (2010). A large-scale candidate gene association study of age at menarche and age at natural menopause. Human Genetics, 128(5), 515–527.CrossRefGoogle Scholar
  60. Heinze, J. (2004). Reproductive conflict in insect societies. In P. J. B. Slater, J. S. Rosenblatt, T. J. Roper, et al. (Eds.), Advances in the study of behavior (Vol. 34, pp. 1–57). New York: Academic.Google Scholar
  61. Heinze, J., & Weber, M. (2011). Lethal sibling rivalry for nest inheritance among virgin ant queens. Journal of Ethology, 29(1), 197–201.CrossRefGoogle Scholar
  62. Henrich, J., & Boyd, R. (2008). Division of labor, economic specialization and the evolution of social stratification. Current Anthropology, 49, 715–724.CrossRefGoogle Scholar
  63. Henrich, J., Boyd, R., Bowles, S., Camerer, C., Fehr, E., Gintis, H., et al. (2001). Cooperation, reciprocity and punishment in fifteen small-scale societies. American Economic Review, 91(2), 73–78.CrossRefGoogle Scholar
  64. Henrich, J., Boyd, R., & Richerson, P. J. (2012). The puzzle of monogamous marriage. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 367(1589), 657–669.CrossRefGoogle Scholar
  65. Hill, K., & Hurtado, A. M. (2009). Cooperative breeding in South American hunter-gatherers. Proceedings of the Royal Society, Series B: Biological Sciences, 276(1674), 3863–3870.Google Scholar
  66. Hill, K., & Hurtado, A. M. (2012). Human reproductive assistance. Nature, 483, 160–162.CrossRefGoogle Scholar
  67. Hirsh, A. E., & Gordon, D. M. (2001). Distributed problem solving in social insects. Annals of Mathematics and Artificial Intelligence, 31(1–4), 199–221.CrossRefGoogle Scholar
  68. Holden, C. J., Sear, R., & Mace, R. (2003). Matriliny as daughter-biased investment. Evolution and Human Behavior, 24(2), 99–112.CrossRefGoogle Scholar
  69. Hölldobler, B. (2010). Territories of the African weaver ant (Oecophylla longinoda [Latreille]): a field study. Zeitschrift für Tierpsychologie, 51(2), 201–213.Google Scholar
  70. Hou, C., Kaspari, M., Vander Zanden, H. B., & Gillooly, J. F. (2010). Energetic basis of colonial living in social insects. Proceedings of the National Academy of Sciences of the United States of America, 107(8), 3634–3638.CrossRefGoogle Scholar
  71. Hrdy, S. B. (1999). Mother Nature: A history of mothers, infants and natural selection. New York: Pantheon.Google Scholar
  72. Hrdy, S. B. (2005). Evolutionary context of human development: The cooperative breeding hypothesis. In C. S. Carter, L. Ahnert, K. E. Grossmann, S. B. Hrdy, M. E. Lamb, S. W. Porges, & N. Sachser (Eds.), Attachment and bonding: A new synthesis (92nd Dahlem Workshop, pp. 9–32). Cambridge: MIT Press.Google Scholar
  73. Hrdy, S. B. (2009). Mothers and others: The evolutionary origins of mutual understanding. Cambridge: Harvard University Press.Google Scholar
  74. Hunt, J. H., & Nalepa, C. A. (Eds.). (1994). Nourishment & evolution in insect societies. Boulder: Westview Press.Google Scholar
  75. Hvilsom, C., Qian, Y., Bataillon, T., Li, Y., Mailund, T., Sallé, B., et al. (2012). Extensive X-linked adaptive evolution in central chimpanzees. Proceedings of the National Academy of Sciences of the United States of America, 109(6), 2054–2059.CrossRefGoogle Scholar
  76. Isler, K., & van Schaik, C. P. (2012). Allomaternal care, life history and brain size evolution in mammals. Journal of Human Evolution, 63(1), 52–63.CrossRefGoogle Scholar
  77. Jablonka, E. (2004). The evolution of the peculiarities of mammalian sex chromosomes: an epigenetic view. BioEssays, 26(12), 1327–1332.CrossRefGoogle Scholar
  78. Jamison, C. S., Cornell, L. L., Jamison, P. L., & Nakazato, H. (2002). Are all grandmothers equal? A review and a preliminary test of the “grandmother hypothesis” in Tokugawa Japan. American Journal of Physical Anthropology, 119(1), 67–76.CrossRefGoogle Scholar
  79. Jiao, X., Qin, C., Li, J., Qin, Y., Gao, X., Zhang, B., et al. (2012). Cytogenetic analysis of 531 Chinese women with premature ovarian failure. Human Reproduction, 27(7), 2201–2207.CrossRefGoogle Scholar
  80. Johnstone, R. A., & Cant, M. A. (2010). The evolution of menopause in cetaceans and humans: the role of demography. Proceedings of the Royal Society, Series B: Biological Sciences, 277(1701), 3765–3771.Google Scholar
  81. Jones, D. (2011). The matrilocal tribe: an organization of demic expansion. Human Nature, 22(1–2), 177–200.CrossRefGoogle Scholar
  82. Kachel, A. F., & Premo, L. S. (2012). Disentangling the evolution of early and late life history traits in humans. Evolutionary Biology. doi: 10.1007/s11692-012-9169-4.Google Scholar
  83. Kaplan, H. S., & Gurven, M. (2005). The natural history of human food sharing and cooperation: A review and a new multi-individual approach to the negotiation of norms. In H. Gintis, S. Bowles, R. Boyd, & E. Fehr (Eds.), Moral sentiments and material interests: The foundations of cooperation in economic life (pp. 75–114). Cambridge: MIT Press.Google Scholar
  84. Kaplan, H. S., & Robson, A. J. (2002). The emergence of humans: the coevolution of intelligence and longevity with intergenerational transfers. Proceedings of the National Academy of Sciences of the United States of America, 99(15), 10221–10226.CrossRefGoogle Scholar
  85. Kaptein, N., Billen, J., & Gobin, B. (2005). Larval begging for food enhances reproductive options in the ponerine ant Gnamptogenys striatula. Animal Behaviour, 69, 293–299.CrossRefGoogle Scholar
  86. Keeley, L. H. (1996). War before civilization. USA: Oxford University Press.Google Scholar
  87. Keller, L., & Genoud, M. (1997). Extraordinary lifespans in ants: a test of evolutionary theories of ageing. Nature, 389, 958–960.CrossRefGoogle Scholar
  88. Kelly, R. L. (1983). Hunter-gatherer mobility strategies. Journal of Anthropological Research, 39(3), 277–306.Google Scholar
  89. Kesebir, S. (2012). The superorganism account of human sociality: how and when human groups are like beehives. Personality and Social Psychology Review, 16(3), 233–261.CrossRefGoogle Scholar
  90. Kim, P. S., Coxworth, J. E., & Hawkes, K. (2012). Increased longevity evolves from grandmothering. Proceedings of the Royal Society, Series B: Biological Sciences, 279(1749), 4880–4884.Google Scholar
  91. Kokko, H., Johnstone, R. A., & Clutton-Brock, T. H. (2001). The evolution of cooperative breeding through group augmentation. Proceedings of the Royal Society, Series B: Biological Sciences, 268(1463), 187–196.Google Scholar
  92. Kong, A., Frigge, M. L., Masson, G., Besenbacher, S., Sulem, P., Magnusson, G., et al. (2012). Rate of de novo mutations and the importance of father’s age to disease risk. Nature, 488(7412), 471–475.CrossRefGoogle Scholar
  93. Kramer, K. L. (2005). Children’s help and the pace of reproduction: cooperative breeding in humans. Evolutionary Anthropology, 14, 224–237.CrossRefGoogle Scholar
  94. Kramer, K. L. (2007). Application of an integrated cooperation approach to human cooperative breeders. Behavioural Processes, 76(2), 167–169.CrossRefGoogle Scholar
  95. Kramer, K. L. (2010). Cooperative breeding and its significance to the demographic success of humans. Annual Review of Anthropology, 39, 417–436.CrossRefGoogle Scholar
  96. Kramer, K. L. (2011). The evolution of human parental care and recruitment of juvenile help. Trends in Ecology & Evolution, 26(10), 533–540.CrossRefGoogle Scholar
  97. Kramer, K. L., & Ellison, P. T. (2010). Pooled energy budgets: resituating human energy allocation trade-offs. Evolutionary Anthropology, 19, 136–147.CrossRefGoogle Scholar
  98. Lahdenperä, M., Russell, A. F., Tremblay, M., & Lummaa, V. (2011). Selection on menopause in two premodern human populations: no evidence for the Mother Hypothesis. Evolution, 65(2), 476–489.CrossRefGoogle Scholar
  99. Lahdenperä, M., Gillespie, D. O. S., Lummaa, V., & Russell, A. F. (2012). Severe intergenerational reproductive conflict and the evolution of menopause. Ecology Letters, 15(11), 1283–1290.CrossRefGoogle Scholar
  100. Lassek, W. D., & Gaulin, S. J. (2007). Menarche is related to fat distribution. American Journal of Physical Anthropology, 133(4), 1147–1151.CrossRefGoogle Scholar
  101. Le Bourg, E. (2007). Does reproduction decrease longevity in human beings? Ageing Research Reviews, 6, 141–149.CrossRefGoogle Scholar
  102. Leadbeater, E., Carruthers, J. M., Green, J. P., et al. (2011). Nest inheritance is the missing source of direct fitness in a primitively eusocial insect. Science, 333(6044), 874–876.CrossRefGoogle Scholar
  103. Leonetti, D. L., & Chabot-Hanowell, B. (2011). The foundations of kinship: households. Human Nature, 22(1–2), 16–40.CrossRefGoogle Scholar
  104. Loat, C. S., Asbury, K., Galsworthy, M. J., Plomin, R., & Craig, I. W. (2004). X inactivation as a source of behavioural differences in monozygotic female twins. Twin Research, 7(1), 54–61.CrossRefGoogle Scholar
  105. Loope, K. J., & Jeanne, R. L. (2008). A test of adaptive hypotheses for rapid nest construction in a swarm-founding wasp. Insectes Sociaux, 55(3), 274–282.CrossRefGoogle Scholar
  106. Lukas, D., & Clutton-Brock, T. (2012). Life histories and the evolution of cooperative breeding in mammals. Proceedings of the Royal Society, Series B: Biological Sciences, 279(1744), 4065–4070.Google Scholar
  107. Mace, R., & Alvergne, A. (2012). Female reproductive competition within families in rural Gambia. Proceedings of the Royal Society, Series B: Biological Sciences, 279(1736), 2219–2227.Google Scholar
  108. Marlowe, F. W. (1998). The nobility hypothesis: the human breast as an honest signal of residual reproductive value. Human Nature, 9(3), 263–271.Google Scholar
  109. Mas, F., & Kölliker, M. (2008). Maternal care and offspring begging in social insects: chemical signalling, hormonal regulation and evolution. Animal Behaviour, 76, 1121–1131.CrossRefGoogle Scholar
  110. Mathew, S., & Boyd, R. (2011). Punishment sustains large-scale cooperation in prestate warfare. Proceedings of the National Academy of Sciences, 108(28), 11375–11380.CrossRefGoogle Scholar
  111. Miles, J. H., McCathren, R. B., Stichter, J., & Shinawi, M. (2003). Autism spectrum disorders. In R. A. Pagon, T. D. Bird, C. R. Dolan, et al. (Eds.), GeneReviews™ . Seattle: University of Washington. Available from
  112. Mitteldorf, J. (2010). Female fertility and longevity. Age (Dordrecht), 32(1), 79–84.CrossRefGoogle Scholar
  113. Monget, P., Bobe, J., Gougeon, A., Fabre, S., Monniaux, D., & Dalbies-Tran, R. (2012). The ovarian reserve in mammals: a functional and evolutionary perspective. Molecular and Cellular Endocrinology, 356(1–2), 2–12.CrossRefGoogle Scholar
  114. Monnin, T. (2006). Chemical recognition of reproductive status in social insects. Annales Zoologici Fennici, 43, 515–530.Google Scholar
  115. Moreau, C., Bhérer, C., Vézina, H., Jomphe, M., Labuda, D., & Excoffier, L. (2011). Deep human genealogies reveal a selective advantage to be on an expanding wave front. Science, 334(6059), 1148–1150.CrossRefGoogle Scholar
  116. Mueller, U. G., Rehner, S. A., & Schultz, T. R. (1998). The evolution of agriculture in ants. Science, 281(5385), 2034–2038.CrossRefGoogle Scholar
  117. Myrskylä, M., & Fenelon, A. (2012). Maternal age and offspring adult health: evidence from the health and retirement study. Demography. doi: 10.1007/s13524-012-0132-x.Google Scholar
  118. Nettle, D., & Dunbar, R. I. M. (1997). Social markers and the evolution of reciprocal exchange. Current Anthropology, 38(1), 93–99.CrossRefGoogle Scholar
  119. Nguyen, D. K., & Disteche, C. M. (2006). High expression of the mammalian X chromosome in brain. Brain Research, 1126(1), 46–49.CrossRefGoogle Scholar
  120. Nichols, H. J., Bell, M. B. V., Hodge, S. J., & Cant, M. A. (2012). Resource limitation moderates the adaptive suppression of subordinate breeding in a cooperatively breeding mongoose. Behavioral Ecology, 23(3), 635–642.CrossRefGoogle Scholar
  121. Oster, G. F., & Wilson, E. O. (1978). Caste and ecology in the social insects. Monographs in population biology (Vol. 12). Princeton: Princeton University Press.Google Scholar
  122. Parker, J. D. (2010). What are social insects telling us about aging? Myrmecological News, 13, 103–110.Google Scholar
  123. Persani, L., Rossetti, R., & Cacciatore, C. (2010). Genes involved in human premature ovarian failure. Journal of Molecular Endocrinology, 45(5), 257–279.CrossRefGoogle Scholar
  124. Powell, S. (2011). How much do army ants eat? On the prey intake of a neotropical top-predator. Insectes Sociaux, 58(3), 317–324.CrossRefGoogle Scholar
  125. Qin, Y., Sun, M., You, L., Wei, D., Sun, J., Liang, X., et al. (2012). ESR1, HK3 and BRSK1 gene variants are associated with both age at natural menopause and premature ovarian failure. Orphanet Journal of Rare Diseases, 7(5), 1–6.Google Scholar
  126. Queller, D. C. (1989). The evolution of eusociality: reproductive head starts of workers. Proceedings of the National Academy of Sciences of the United States of America, 86(9), 3224–3226.CrossRefGoogle Scholar
  127. Queller, D. C. (1994). Extended parental care and the origin of eusociality. Proceedings of the Royal Society of London Series B, 256, 105–111.CrossRefGoogle Scholar
  128. Quinlan, R. J., & Flinn, M. V. (2005). Kinship and reproduction in a Caribbean community. Human Nature, 16(1), 32–57.Google Scholar
  129. Quinlan, R. J., & Quinlan, M. B. (2008). Human lactation, pair-bonds, and alloparents: a cross-cultural analysis. Human Nature, 19(1), 87–102.Google Scholar
  130. Ragsdale, J. E. (1999). Reproductive skew theory extended: the effect of resource inheritance on social organization. Evolutionary Ecology Research, 1, 859–874.Google Scholar
  131. Ratnieks, F. L. W., & Anderson, C. (1999). Task partitioning in insect societies. Insectes Sociaux, 47(2), 95–108.CrossRefGoogle Scholar
  132. Ratnieks, F. L., & Wenseleers, T. (2005). Policing insect societies. Science, 307(5706), 54–56.CrossRefGoogle Scholar
  133. Reddy, P., Adhikari, D., Zheng, W., Liang, S., Hämäläinen, T., Tohonen, V., et al. (2009). PDK1 signaling in oocytes controls reproductive aging and lifespan by manipulating the survival of primordial follicles. Human Molecular Genetics, 18(15), 2813–2824.CrossRefGoogle Scholar
  134. Reeve, H. K., & Shellman-Reeve, J. S. (1997). The general protected invasion theory: sex biases in parental and alloparental care. Evolutionary Ecology, 11, 357–370.CrossRefGoogle Scholar
  135. Reiches, M. W., Ellison, P. T., Lipson, S. F., Sharrock, K. C., Gardiner, E., & Duncan, L. G. (2009). Pooled energy budget and human life history. American Journal of Human Biology, 21(4), 421–429.CrossRefGoogle Scholar
  136. Rice, W. R., Gavrilets, S., & Friberg, U. (2010). The evolution of sex-specific grandparental harm. Proceedings of the Royal Society, Series B: Biological Sciences, 277(1694), 2727–2735.Google Scholar
  137. Rodriguez-Serrano, E., Inostroza-Michael, O., Avaria-Llautureo, J., & Hernandez, C. E. (2012). Colony size evolution and the origin of eusociality in corbiculate bees (Hymenoptera: Apinae). PLoS One, 7(7), e40838.CrossRefGoogle Scholar
  138. Schmid-Hempel, P. (1998). Parasites in social insects. Princeton: Princeton University Press.Google Scholar
  139. Schoenstadt, A. (2006). Children with Klinefelter Syndrome. Resource document. Genetics Health Channel by eMedTV. Accessed 9 November 2012.
  140. Schrempf, A., Cremer, S., & Heinze, J. (2011). Social influence on age and reproduction: reduced lifespan and fecundity in multi-queen ant colonies. Journal of Evolutionary Biology, 24(7), 1455–1461.CrossRefGoogle Scholar
  141. Schultz, T. R., & Brady, S. G. (2008). Major evolutionary transitions in ant agriculture. Proceedings of the National Academy of Sciences of the United States of America, 105(14), 5435–5440.CrossRefGoogle Scholar
  142. Sear, R., & Mace, R. (2008). Who keeps children alive? A review of the effects of kin on child survival. Evolution and Human Behavior, 29(1), 1–18.CrossRefGoogle Scholar
  143. Seeley, T. D. (2010). Honeybee democracy. Princeton: Princeton University Press.Google Scholar
  144. Sellen, D. W. (2007). Evolution of infant and young child feeding: implications for contemporary public health. Annual Review of Nutrition, 27, 123–148.CrossRefGoogle Scholar
  145. Semeiks, J., & Grishin, N. V. (2012). A method to find longevity-selected positions in the mammalian proteome. PLoS One, 7(6), e38595.CrossRefGoogle Scholar
  146. Service, E. R. (1975). Origins of the state and civilization: The process of cultural evolution. New York: Norton.Google Scholar
  147. Singh, D., Dixson, B. J., Jessop, T. S., Morgan, B., & Dixson, A. F. (2010). Cross-cultural consensus for waist-hip ratio and women’s attractiveness. Evolution and Human Behavior, 31(3), 176–181.CrossRefGoogle Scholar
  148. Skillern, A., & Rajkovic, A. (2008). Recent developments in identifying genetic determinants of premature ovarian failure. Sexual Development, 2(4–5), 228–243.CrossRefGoogle Scholar
  149. Skuse, D. H. (2006a). Genetic influences on the neural basis of social cognition. Philosophical Transactions of the Royal Society, Series B: Biological Sciences, 361(1476), 2129–2141.CrossRefGoogle Scholar
  150. Skuse, D. H. (2006b). Sexual dimorphism in cognition and behaviour: the role of X-linked genes. European Journal of Endocrinology, 155, S99–S106. doi: 10.1530/eje.1.02263.CrossRefGoogle Scholar
  151. Solomon, N. G., & French, J. A. (Eds.). (1997). Cooperative breeding in mammals. New York: Cambridge University Press.Google Scholar
  152. Stacey, P. B., & Koenig, W. D. (Eds.). (1990). Cooperative breeding in birds: Long term studies of ecology and behaviour. Cambridge: Cambridge University Press.Google Scholar
  153. Strassmann, B. I. (2011). Cooperation and competition in a cliff-dwelling people. Proceedings of the National Academy of Sciences of the United States of America, 108(Supplement 2), 10894–10901.CrossRefGoogle Scholar
  154. Strassmann, B. I., & Garrard, W. M. (2011). Alternatives to the grandmother hypothesis: a meta-analysis of the association between grandparental and grandchild survival in patrilineal populations. Human Nature, 22(1–2), 201–222.CrossRefGoogle Scholar
  155. Strassmann, B. I., & Clarke, A. L. (1998). Ecological constraints on marriage in rural Ireland. Evolution and Human Behavior, 19(1), 33–55.CrossRefGoogle Scholar
  156. Strassmann, B. I., & Kurapati, N. T. (2010). Are humans cooperative breeders? Most studies of natural fertility populations do not support the grandmother hypothesis. Behavioral and Brain Sciences, 33(1), 35–39.Google Scholar
  157. Strassmann, J. E., & Queller, D. C. (2010). The social organism: congresses, parties, and committees. Evolution, 63(3), 605–616.CrossRefGoogle Scholar
  158. Strassmann, B. I., & Warner, J. H. (1998). Predictors of fecundability and conception waits among the Dogon of Mali. American Journal of Physical Anthropology, 105(2), 167–184.CrossRefGoogle Scholar
  159. Sullivan, S. D., Welt, C., & Sherman, S. (2011). FMR1 and the continuum of primary ovarian insufficiency. Seminars in Reproductive Medicine, 29(4), 299–307.CrossRefGoogle Scholar
  160. Tanskanen, A. O., Rotkirch, A., & Danielsbacka, M. (2011). Do grandparents favor granddaughters? Biased grandparental investment in UK. Evolution and Human Behavior, 32(6), 407–415.CrossRefGoogle Scholar
  161. te Velde, E. R., & Pearson, P. L. (2002). The variability of female reproductive ageing. Human Reproduction Update, 8(2), 141–154.CrossRefGoogle Scholar
  162. Úbeda, F., & Duéñez-Guzmá, E. A. (2011). Power and corruption. Evolution, 65(4), 1127–1139.CrossRefGoogle Scholar
  163. Uematsu, K., Kutsukake, M., Fukatsu, T., Shimada, M., & Shibao, H. (2010). Altruistic colony defense by menopausal female insects. Current Biology, 20(13), 1182–1186.CrossRefGoogle Scholar
  164. Valeggia, C. R. (2009). Flexible caretakers: Responses of Toba families in transition. In G. Bentley & R. Mace (Eds.), Substitute parents: Biological and social perspectives on alloparenting in human societies. Studies in biosocial science series (pp. 100–115). Oxford/New York: Berghahn Press.Google Scholar
  165. Vallender, E. J., & Lahn, B. T. (2004). How mammalian sex chromosomes acquired their peculiar gene content. BioEssays, 26(2), 159–169.CrossRefGoogle Scholar
  166. Vallender, E. J., Pearson, N. M., & Lahn, B. T. (2005). The X chromosome: not just her brother’s keeper. Nature Genetics, 37, 343–345.CrossRefGoogle Scholar
  167. van Schaik, C. P., & Burkart, J. M. (2009). Mind the gap: Cooperative breeding and the evolution of our unique features. In P. M. Kappeler & J. Silk (Eds.), Mind the gap: Tracing the origins of human universals (pp. 477–496). Heidelberg: Springer.Google Scholar
  168. van Zweden, J. S., & d’Ettorre, P. (2010). Nestmate recognition in social insects and the role of hydrocarbons. In G. J. Blomquist & A.-G. Bagnères (Eds.), Insect hydrocarbons: Biology, biochemistry, and chemical ecology (pp. 222–243). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  169. Vicoso, B., & Charlesworth, B. (2009). Effective population size and the faster-X effect: an extended model. Evolution, 63(9), 2413–2426.CrossRefGoogle Scholar
  170. Walker, R., Hill, K., Kaplan, H., & McMillan, G. (2002). Age dependency of hunting ability among the Ache of eastern Paraguay. Journal of Human Evolution, 42, 639–657.CrossRefGoogle Scholar
  171. Wells, J. C. (2003). Parent-offspring conflict theory, signaling of need, and weight gain in early life. Quarterly Review of Biology, 78(2), 169–202.CrossRefGoogle Scholar
  172. Wells, J. C., & Stock, J. T. (2007). The biology of the colonizing ape. Yearbook of Physical Anthropology, 50, 191–222.CrossRefGoogle Scholar
  173. Wenzel, J. W., & Pickering, J. (1991). Cooperative foraging, productivity, and the central limit theorem. Proceedings of the National Academy of Sciences of the United States of America, 88, 36–38.CrossRefGoogle Scholar
  174. Whiten, A., & Erdal, D. (2012). The human socio-cognitive niche and its evolutionary origins. Philosophical Transactions of the Royal Society, B: Biological Sciences, 367(1599, Special Issue: SI), 2119–2129.CrossRefGoogle Scholar
  175. Wilder, J. A. (2010). Do grandmothers who play favorites sow seeds of genomic conflict? BioEssays, 32(6), 457–460.CrossRefGoogle Scholar
  176. Williams, G. C. (1957). Pleiotropy, natural selection, and the evolution of senescence. Evolution, 11(4), 398–411.CrossRefGoogle Scholar
  177. Wilson, D. S., Timmel, J. J., & Miller, R. R. (2004). Cognitive cooperation – When the going gets tough, think as a group. Human Nature, 15(3), 225–250.CrossRefGoogle Scholar
  178. Wilson, E. O. (1971). The insect societies. Cambridge: Belknap.Google Scholar
  179. Wilson, E. O. (2012). The social conquest of earth. New York: Liveright Press.Google Scholar
  180. Zechner, U., Wilda, M., Kehrer-Sawatzki, H., Vogel, W., Fundele, R., & Hameister, H. (2001). A high density of X-linked genes for general cognitive ability: a run-away process shaping human evolution? Trends in Genetics, 17(12), 697–701.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of Biological SciencesSimon Fraser UniversityBurnabyCanada

Personalised recommendations