Human Nature

, Volume 18, Issue 2, pp 109–124 | Cite as

Paleoclimatic Variation and Brain Expansion during Human Evolution

Article

Abstract

One of the major adaptations during the evolution of Homo sapiens was an increase in brain size. Here we present evidence that a significant and substantial proportion of variation in brain size may be related to changes in temperature. Based on a sample of 109 fossilized hominid skulls, we found that cranial capacities were highly correlated with paleoclimatic changes in temperature, as indexed by oxygen isotope data and sea-surface temperature. Indeed, as much as 52% of the variance in the cranial capacity of these skulls could be accounted for by temperature variation at 100 ka intervals. As an index of more short-term seasonal fluctuations in temperature, we examined the latitude of the sites from which the crania originated. More than 22% of the variance in cranial capacity of these skulls could be accounted for by variation in equatorial distance.

Keywords

Cranial capacity Homo Paleoclimatic variability Seasonal variability Sea-surface temperature Variability selection 

References

  1. Ash, J. A., & Gallup, G. G. Jr. (2007). Brain size, intelligence, and paleoclimatic variation. In G. Gehr & G. Miller (Eds.), Mating intelligence: Sex, relationships, and the mind’s reproductive system. Mahwah, NJ: Lawerence Erlbaum Associates.Google Scholar
  2. Aiello, L. C., & Wood, B. A. (1994). Cranial variables as predictors of hominine body mass. American Journal of Physical Anthropology, 95, 409–426.CrossRefGoogle Scholar
  3. Andreasen, N. C., Flaum, M., Swayze II, V., O’Leary, D. S., Alliger, R., Cohen, G., et al. (1993). Intelligence and brain structure in normal individuals. American Journal of Psychiatry, 150, 130–134.Google Scholar
  4. Barton, R. A., & Harvey, P. H. (2000). Mosaic evolution of brain structure in mammals. Nature, 405, 1055–1058.CrossRefGoogle Scholar
  5. Beals, K. L., Smith, C. L., & Dodd, S. M. (1984). Brain size, cranial morphology, climate and time machines. Current Anthropology, 25, 301–330.CrossRefGoogle Scholar
  6. Bischoff, J. L., & Shamp, D. D. (2003). The sima de los huesos hominids date to beyond U/Th equilibrium (>350 kyr) and perhaps to 400–500 kyr: New radiometric dates. Journal of Archaeological Science, 30, 275–280.CrossRefGoogle Scholar
  7. Blackburn, T. M., Gaston, K. J., & Loder, N. (1999). Geographic gradients in body size: A clarification on Bergmann’s rule. Diversity and Distributions, 5, 165–174.CrossRefGoogle Scholar
  8. Bradley, R. S. (1999). Paleoclimatology: Reconstructing climates of the quaternary (2nd ed.). San Diego: Academic.Google Scholar
  9. Bruner, E., & Manzi, G. (2005). CT-based description and phyletic evaluation of the archaic human calvarium from ceprano, Italy. Anatomical Record, 285A, 643–658.CrossRefGoogle Scholar
  10. Calvin, W. H. (1996). How brains think. New York: Basic Books.Google Scholar
  11. Cohen, J., Cohen, P., West, S. G., & Aiken, L. S. (2003). Applied multiple regression/correlation analysis for the behavioral sciences (3rd ed.). Mahwah, NJ: Lawrence Erlbaum Associates.Google Scholar
  12. Conroy, H. C., Weber, H., Seidler, H., Recheis, W., zur Nedden, D., & Mariam, J. H. (2000). Endocranial capacity of the Bodo cranium determined from three-dimensional computed tomography. American Journal of Physical Anthropology, 113, 111–118.CrossRefGoogle Scholar
  13. Crowley, T. J., & North, G. R. (1991). Paleoclimatology. New York: Oxford University Press.Google Scholar
  14. deMenocal, P. B., & Bloemendal, J. (1995). Plio-Pleistocene subtropical African climate variability and the paleoenvironment of hominid evolution: A combined data-model approach. In E. Vrba, G. Denton, L. Burckle, & T. Partridge (Eds.), Paleoclimate and evolution, with emphasis on human origins (pp. 262–288). New Haven: Yale University Press.Google Scholar
  15. De Miguel, C., & Henneberg, M. (2001). Variation in hominid brain size: How much is due to method? Homo, 52, 2–56.Google Scholar
  16. Dunbar, R. (1998). The social brain hypothesis. Evolutionary Anthropology, 6, 178–191.CrossRefGoogle Scholar
  17. Egan, V., Chiswick, A., Santosh, C., Naidu, K., Rimmington, J. E., & Best, J. J. K. (1994). Size isn’t everything: A study of brain volume, intelligence and auditory evoked potentials. Personality and Individual Differences, 17, 357–367.CrossRefGoogle Scholar
  18. Egan, V., Wickett, J. C., & Vernon, P. A. (1995). Brain size and intelligence: Erratum, addendum, and correction. Personality and Individual Differences, 19, 113–115.CrossRefGoogle Scholar
  19. Falk, D. (1990). Brain evolution in Homo—the radiator theory. Behavioral and Brain Sciences, 13, 333–343.Google Scholar
  20. Falk, D., & Gage, T. B. (1997). Flushing the radiator? A reply to braga and boesch. Journal of Human Evolution, 33, 495–502.CrossRefGoogle Scholar
  21. Gignac, G. E., Vernon, P. A., & Wickett, J. C. (2003). Factors influencing the relationship between brain size and intelligence. In H. Nyborg (Ed.), The scientific study of general intelligence: Tribute to Arthur R. Jensen (pp. 93–106). Oxford: Pergamon.Google Scholar
  22. Harvey, I., Persaud, R., Ron, M. A., Baker, G., & Murray, R. M. (1994). Volumetric MRI measurements in bipolars compared with schizophrenics and healthy controls. Psychological Medicine, 24, 689–699.CrossRefGoogle Scholar
  23. Hershkovitz, I., Greenwald, C., Rothschild, B. M., Latimer, B., Dutour, O., Jellema, L. M., et al. (1999). The elusive diploic veins: Anthropological and anatomical perspective. American Journal of Physical Anthropology, 108, 345–358.CrossRefGoogle Scholar
  24. Holloway, R. L., Broadfield, D. C., & Yuan, M. S. (Eds.) (2004). The human fossil record: Brain endocasts—the paleoneurological evidence. New York: Wiley.Google Scholar
  25. Kareken, D. A., Gur, R. C., Mozley, P. D., Mozley, L. H., Saykin, A. J., Shtasel, D. L., et al. (1995). Cognitive functioning and neuroanatomic volume measures in schizophrenia. Neuropsychology, 9, 211–219.CrossRefGoogle Scholar
  26. Klein, R. (1999). The human career: Human biological and cultural origins (2nd ed.) Chicago: University of Chicago Press.Google Scholar
  27. Kunman, K., Inbar, M., & Clark, R. J. (1999). Palaeoenvironments and cultural sequence of the florisbad middle stone age hominid site, South Africa. Journal of Archaeological Science, 26, 1409–1425.CrossRefGoogle Scholar
  28. Larick, R., Ciochon, R. L., Zaim, Y., Suminto, S., Rizal, Y., Aziz, F., et al. (2001). Early Pleistocene 40Ar/39Ar ages for bapang formation hominins, Central Jawa, Indonesia. Proceedings of the National Academy of Sciences, 98, 4866–4871.CrossRefGoogle Scholar
  29. Lee, S-H. (2005). Brief communication: Is variation in the cranial capacity of the Dmansi sample too high to be from a single species? American Journal of Physical Anthropology, 127, 263–266.CrossRefGoogle Scholar
  30. Lee, S-H., & Wolpoff, M. H. (2003). The pattern of evolution in Pleistocene human brain size. Paleobiology, 29, 186–196.CrossRefGoogle Scholar
  31. McDougall, I., Brown, F. H., & Fleagle, J. G. (2005). Stratigraphic placement of modern humans from Kibish, Ethiopia. Nature, 433, 733–735.CrossRefGoogle Scholar
  32. Marlow, J. R., Lange, C. B., Wefer, G., & Rosell-Melé, A. (2000). Upwelling intensification as part of the Pliocene–Pleistocene climate transition. Science, 290, 2288–2291.Google Scholar
  33. Posthuma, D., De Geus, E. J. C., Baare, W. F. C., Pol, H. E. H., Kahn, R. S., & Boomsma, D. I. (2002). The association between brain volume and intelligence is of genetic origin. Nature Neuroscience, 5, 83–84.CrossRefGoogle Scholar
  34. Potts, R. (1998a). Environmental hypotheses of hominin evolution. Yearbook of Physical Anthropology, 41, 93–136.CrossRefGoogle Scholar
  35. Potts, R. (1998b). Variability selection in hominid evolution. Evolutionary Anthropology, 7, 81–96.CrossRefGoogle Scholar
  36. Potts, R. (2001). Complexity and adaptability in human evolution. In F. Ayala, C. P. Simon, & B. Wood (Eds.), Development of the human species and its adaptation to the environment (pp. 1–31). Retrieved August 10, 2005 from http://www.uchicago.edu/aff/mwc-amacad/biocomplexity/conference_papers/PottsComplexity.pdf.
  37. Raz, N., Torres, I. J., Spencer, W. D., Millman, D., Baertschi, J. C., & Sarpel, G. (1993). Neuroanatomical correlates of age-sensitive and age-invariant cognitive abilities: An in vivo MRI investigation. Intelligence, 17, 407–422.CrossRefGoogle Scholar
  38. Reiss, A. L., Abrams, M. T., Singer, H. S., Ross, J. L., & Denckla, M. B. (1996). Brain development, gender and IQ in children. A volumetric imaging study. Brain, 119, 1763–1774.CrossRefGoogle Scholar
  39. Rightmire, G. P. (2004). Brain size and encephalization en early to mid-Pleistocene homo. American Journal of Physical Anthropology, 124, 109–123.CrossRefGoogle Scholar
  40. Rushton, J. P., & Jensen, A. R. (2005). Thirty years of research on race differences in cognitive ability. Psychology, Public Policy, and Law, 11, 235–294.CrossRefGoogle Scholar
  41. Shackelton, N. J. (1995). New data on the evolution of Pliocene climate variability. In E. Vrba, G. H. Denton, T. C. Partridge, & L. H. Burckle (Eds.), Paleoclimate and evolution, with emphasis on human origins (pp. 242–248). New Haven: Yale University Press.Google Scholar
  42. Shackelton, N. J., Berger, A., & Peltier, W. R. (1990). An alternative astronomical calibration of the lower Pleistocene timescale based on ODP site 677. Transactions of the Royal Society of Edinburgh, Earth Science, 81, 251–261.Google Scholar
  43. Shackelton, N. J., Hall, M. A., & Pate, D. (1995). Pliocene stable isotope stratigraphy of site 846. In N. G. Pisias, L. A. Janacek, A. Palmer-Julson, & T. H. Van Andel (Eds.), Proceedings of the ocean drilling program, scientific results (vol. 138, pp. 337–355). College Station, TX: Ocean Drilling Program.Google Scholar
  44. Shen, G., Cheng, H., & Edwards, R. L. (2004). Mass spectrometric U-series dating of New Cave at Zhoukoudian, China. Journal of Anthropological Science, 31, 337–342.Google Scholar
  45. Tobias, P. V. (1991). Olduvai Gorge, vol. 4: The skulls, endocasts and teeth of Homo Habilis. Cambridge: Cambridge University Press.Google Scholar
  46. Wickett, J. C., & Vernon, P. A. (1994). Peripheral nerve conduction velocity, reaction time, and intelligence: An attempt to replicate Vernon and Mori (1992). Intelligence, 18, 127–131.CrossRefGoogle Scholar
  47. Wickett, J. C., Vernon, P. A., & Lee, D. H. (2000). Relationships between factors of intelligence and brain volume. Personality and Individual Differences, 29, 1095–1122.CrossRefGoogle Scholar
  48. Willerman, L., Schultz, R., Rutledge, J. N., & Bigler, E. D. (1991). In vivo brain size and intelligence. Intelligence, 15, 223–228.CrossRefGoogle Scholar

Copyright information

© Springer Science & Business Media, LLC 2007

Authors and Affiliations

  1. 1.Department of PsychologyUniversity at Albany, State University of New YorkAlbanyUSA

Personalised recommendations