Human Nature

, Volume 18, Issue 2, pp 125–131 | Cite as

Mathematical Talent is Linked to Autism

  • Simon Baron-Cohen
  • Sally Wheelwright
  • Amy Burtenshaw
  • Esther Hobson


A total of 378 mathematics undergraduates (selected for being strong at “systemizing”) and 414 students in other (control) disciplines at Cambridge University were surveyed with two questions: (1) Do you have a diagnosed autism spectrum condition? (2) How many relatives in your immediate family have a diagnosed autism spectrum condition? Results showed seven cases of autism in the math group (or 1.85%) vs one case of autism in the control group (or 0.24%), a ninefold difference that is significant. Controlling for sex and general population sampling, this represents a three- to sevenfold increase for autism spectrum conditions among the mathematicians. There were 7 of 1,405 (or 0.5%) cases of autism in the immediate families of the math group vs 2 of 1,669 (or 0.1%) cases in the immediate families of the control group, which again is a significant difference. These results confirm a link between autism and systemizing, and they suggest this link is genetic given the association between autism and first-degree relatives of mathematicians.


Autism Broader autism phenotype Genetic risk Mathematical talent Systemizing 


  1. APA (American Psychiatric Association) (1980). DSM-III Diagnostic and Statistical Manual of Mental Disorders (3rd ed.). Washington, DC: American Psychiatric Association.Google Scholar
  2. APA (American Psychiatric Association) (1994). DSM-IV Diagnostic and Statistical Manual of Mental Disorders (4th ed.). Washington, DC: American Psychiatric Association.Google Scholar
  3. Baird, G., Simonoff, E., Pickles, A., Chandler, S., Loucas, T., Meldrum, D., & Charman, T. (2006). Prevalence of disorders of the autism spectrum in a population cohort of children in South Thames: The Special Needs and Autism Project (SNAP). Lancet, 368, 210–215.CrossRefGoogle Scholar
  4. Baron-Cohen, S. (2002). The extreme male brain theory of autism. Trends in Cognitive Science, 6, 248–254.CrossRefGoogle Scholar
  5. Baron-Cohen, S. (2003). The essential difference: Men, women and the extreme male brain. Penguin: London.Google Scholar
  6. Baron-Cohen, S. (2006a). The hyper-systemizing, assortative mating theory of autism. Neuropsychopharmacology and Biological Psychiatry, 30, 865–872.CrossRefGoogle Scholar
  7. Baron-Cohen, S. (2006b). Two new theories of autism: Hypersystemizing and assortative mating. Archives of Diseases in Childhood, 91, 2–5.CrossRefGoogle Scholar
  8. Baron-Cohen, S., & Hammer, J. (1997). Parents of children with Asperger syndrome: What is the cognitive phenotype? Journal of Cognitive Neuroscience, 9, 548–554.CrossRefGoogle Scholar
  9. Baron-Cohen, S., Bolton, P., Wheelwright, S., Short, L., Mead, G., Smith, A., et al. (1998). Does autism occur more often in families of physicists, engineers, and mathematicians? Autism, 2, 296–301.CrossRefGoogle Scholar
  10. Baron-Cohen, S., Richler, J., Bisarya, D., Gurunathan, N., & Wheelwright, S. (2003). The systemising quotient (SQ): An investigation of adults with Asperger syndrome or high functioning autism and normal sex differences. Philosophical Transactions of the Royal Society, 358, 361–374.CrossRefGoogle Scholar
  11. Baron-Cohen, S., Wheelwright, S., Scahill, V., Lawson, J., & Spong, A. (2001a). Are intuitive physics and intuitive psychology independent? Journal of Developmental and Learning Disorders, 5, 47–78.Google Scholar
  12. Baron-Cohen, S., Wheelwright, S., Skinner, R., Martin, J., & Clubley, E. (2001b). The autism spectrum quotient (AQ): Evidence from Asperger syndrome/high functioning autism, males and females, scientists and mathematicians. Journal of Autism and Developmental Disorders, 31, 5–17.CrossRefGoogle Scholar
  13. Baron-Cohen, S., Wheelwright, S., Stone, V., & Rutherford, M. (1999). A mathematician, a physicist, and a computer scientist with Asperger syndrome: Performance on folk psychology and folk physics test. Neurocase, 5, 475–483.CrossRefGoogle Scholar
  14. Baron-Cohen, S., Wheelwright, S., Stott, C., Bolton, P., & Goodyer, I. (1997). Is there a link between engineering and autism? Autism: An International Journal of Research and Practice, 1, 153–163.Google Scholar
  15. Benbow, C. P., Lubinski, D., Shea, D. L., & Eftekhari-Sanjani, H. (2000). Sex differences in mathematical reasoning ability at age 13: Their status 20 years later. American Psychological Society, 11, 474–480.Google Scholar
  16. Betrand, J., Mars, A., Boyle, C., Bove, F., Yeargin-Allsopp, M., & Decoufle, P. (2001). Prevalence of autism in a United States population: The brick township, New Jersey, investigation. Pediatrics, 108, 1155–1161.CrossRefGoogle Scholar
  17. Bishop, D. V. M., Maybery, M., Maley, A., Wong, D., Hill, W., & Hallmayer, J. (2004). Using self report to identify the broad phenotype in parents of children with autistic spectrum disorders: A study using the autism-spectrum quotient. Journal of Child Psychology and Psychiatry, 45, 1431–1436.CrossRefGoogle Scholar
  18. Chakrabarti, S., & Fombonne, E. (2001). Pervasive developmental disorders in preschool children. Journal of the American Medical Association, 285, 3093–3099.CrossRefGoogle Scholar
  19. Constantino, J. N., & Todd, R. D. (2005). Intergenerational transmission of subthreshold autistic traits in the general population. Biological Psychiatry, 57, 655–660.CrossRefGoogle Scholar
  20. Ehlers, S., & Gillberg, C. (1993). The epidemiology of Asperger syndrome: A total population study. Journal of Child Psychology and Psychiatry, 34, 1327–1350.CrossRefGoogle Scholar
  21. Lawson, J., Baron-Cohen, S., & Wheelwright, S. (2004). Empathising and systemising in adults with and without Asperger syndrome. Journal of Autism and Developmental Disorders, 34, 301–310.CrossRefGoogle Scholar
  22. Scott, F., Baron-Cohen, S., Bolton, P., & Brayne, C. (2002). Prevalence of autism spectrum conditions in children aged 5–11 years in Cambridgeshire, UK. Autism, 6, 231–237.CrossRefGoogle Scholar
  23. Woodbury-Smith, M., Robinson, J., & Baron-Cohen, S. (2005). Screening adults for Asperger syndrome using the AQ: Diagnostic validity in clinical practice. Journal of Autism and Developmental Disorders, 35, 331–335.CrossRefGoogle Scholar
  24. World Health Organization (WHO) (1994). International classification of diseases (10th ed.). Geneva: World Health Organization.Google Scholar

Copyright information

© Springer Science & Business Media, LLC 2007

Authors and Affiliations

  • Simon Baron-Cohen
    • 1
  • Sally Wheelwright
    • 1
  • Amy Burtenshaw
    • 1
  • Esther Hobson
    • 1
  1. 1.Department of Psychiatry, Autism Research CentreCambridge UniversityCambridgeUK

Personalised recommendations