Advertisement

Head and Neck Pathology

, Volume 12, Issue 3, pp 419–429 | Cite as

Cholesteatoma Pearls: Practical Points and Update

  • James T. Castle
Special Issue: Ear

Abstract

The European Academy of Otology and Neurotology in collaboration with the Japanese Otological Society (EAONO/JOS) recently produced a joint consensus document outlining the definitions, classification and staging of middle ear cholesteatoma. The goals were to provide terminologies in the description of cholesteatoma, classify cholesteatoma into distinct categories to facilitate the comparison of surgical outcomes and to provide a staging system that reflects the severity, difficulty of complete removal and restoration of normal function. Cholesteatoma is considered a benign, expanding and destructive epithelial lesion of the temporal bone that is the result of a multifactorial process. If undetected and left treated, cholesteatoma may lead to significant complications including hearing loss, temporal bone destruction and cranial invasion. Recent advances in imaging modalities have allowed for high sensitivity and specificity in identifying the presence of cholesteatoma. Despite these advances, deficiencies exist around the world with access to health care facilities meaning cholesteatoma remains a serious and challenging entity to manage whether found within the pediatric or adult population. Proper diagnosis and management of each form of cholesteatoma is achieved by a thorough understanding of the etiology, classification, clinical presentation and histology, thereby facilitating prevention, early detection and appropriate treatment.

Keywords

Cholesteatoma Middle ear cholesteatoma Congenital cholesteatoma Acquired cholesteatoma 

Notes

Acknowledgements

Thanks and gratitude to Dr. Robert Shih for his tremendous assistance in radiographic image selection and interpretation and to Drs. Caroline Schlocker and George Conley for their intraoperative images and interpretation.

Compliance with Ethical Standards

Conflict of interest

James T. Castle declares that he has no conflict of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

References

  1. 1.
    Yung M, Tono T, Olszewska E, et al. EAONO/JOS Joint consensus statements on the definitions, classification and staging of middle ear cholesteatoma. J Int Adv Otol. 2017;13:1–8.CrossRefPubMedGoogle Scholar
  2. 2.
    Müller J. Ueber den feineren bau und die formen der krankhaften geschwulste. Berlin, G Reimer. 1838. Folio.Google Scholar
  3. 3.
    De Verney JG. Traité de l’organie de l’ouïe. Paris: E. Michallet; 1683.Google Scholar
  4. 4.
    Aquino JE, Cruz Filho NA, de Aquino JN. Epidemiology of middle ear and mastoid cholesteatomas: study of 1146 cases. Braz J Otorhinolaryngol. 2011;77:341–7.CrossRefPubMedGoogle Scholar
  5. 5.
    Bennett M, Warren F, Jackson GC. Congenital cholesteatoma: theories, facts and 53 patients. Otolaryngol Clin N Am. 2006;39:1081–94.CrossRefGoogle Scholar
  6. 6.
    Shohet JA, De Jong AI. The management of pediatric cholesteatoms. Otolaryngol Clin N Am. 2002;35:841–51.CrossRefGoogle Scholar
  7. 7.
    Olszewska E, Wagner M, Bernal-Sprekelsen M, et al. Etiopathogenesis of cholesteatoma. Eur Arch Otorhinolaryngol. 2004;261:6–24.CrossRefPubMedGoogle Scholar
  8. 8.
    Barath K, Huber AM, Stampfil P, et al. Neuroradiology of cholesteatomas. AJNR Am J Neuroradiol. 2011;32:221–9.CrossRefPubMedGoogle Scholar
  9. 9.
    Jennings BA, Prinsley P, Philpott C, et al. The genetics of cholesteatoma. A systematic review using narrative synthesis. Clin Otolaryngol. 2017;43:55–67.CrossRefPubMedGoogle Scholar
  10. 10.
    Bois E, Nassar M, Zenaty D, et al. Otologic disorders in Turner syndrome. Eur Ann Otorhinolaryngol Head Neck Dis. 2017;135:21–4.CrossRefPubMedGoogle Scholar
  11. 11.
    Lim DBN, Gault EJ, Kubba H, et al. Cholesteatoma has a high prevalence in Turner syndrome, highlighting the need for earlier diagnosis and the potential benefits of otoscopy training for paediatricians. Acta Paediatr. 2014;103:e282–7.CrossRefPubMedGoogle Scholar
  12. 12.
    Hall JE, Richter GT, Choo DI. Surgical management of otologic disease in pediatric patients with Turner syndrome. Int J Pediatr Otorhinolaryngol. 2009;73:57–65.CrossRefPubMedGoogle Scholar
  13. 13.
    Mann W, Al-Nawas B, Wriedt S. Cholesteatoma of the hypotympanum in a patient with Treacher Collins syndrome. Auris Nasus Larynx. 2014;41:101–4.CrossRefPubMedGoogle Scholar
  14. 14.
    Nash R, Possamai V, Maskell S, et al. Canal wall reconstruction and preservation in the surgical management of cholesteatoma in children with Down’s syndrome. Int J Pediatr Otorhinolaryngol. 2014;78:1747–51.CrossRefPubMedGoogle Scholar
  15. 15.
    Paulson LM, Weaver TS, Macarthur CJ. Outcomes of tympanostomy tube placement in children with Down syndrome—a retrospective review. Int J Pediatr Otorhinolaryngol. 2014;78:223–6.CrossRefPubMedGoogle Scholar
  16. 16.
    Bacciu A, Pasanisi E, Vincenti V, et al. Surgical treatment of middle ear cholesteatoma in children with Down syndrome. Otol Neurotol. 2005;26:1007–10.CrossRefPubMedGoogle Scholar
  17. 17.
    Suzuki C, Ohtani I. Bone destruction resulting from rupture of a cholesteatoma sac: temporal bone pathology. Otol Neurotol. 2004;25:674–7.CrossRefPubMedGoogle Scholar
  18. 18.
    Büchner SA, Itin P. Focal dermal hypoplasia syndrome in a male patient. Report of a case and histologic and immunohistochemical studies. Arch Dermatol. 1992;128:1078–82.CrossRefPubMedGoogle Scholar
  19. 19.
    Imbery TE, Sobin LB, Commesso E, et al. Long-term otologic and audiometric outcomes in patients with cleft palate. Otolaryngol Head Neck Surg. 2017;157:676–82.CrossRefPubMedGoogle Scholar
  20. 20.
    Kopcsányi G, Vincze O, Bagdán V, et al. Retrospective analysis of tympanoplasty in children with cleft palate: a 24-year experience. II. Cholesteatomatous cases. Int J Pediatr Otorhinolaryngol. 2015;79:698–706.CrossRefPubMedGoogle Scholar
  21. 21.
    Djurhuus BD, Skytthe A, Faber CE, Christensen K. Cholesteatoma risk in 8,593 orofacial cleft cases and 6,989 siblings: a nationwide study. Laryngoscope 2015;125:1225–9.CrossRefPubMedGoogle Scholar
  22. 22.
    Lau CC, Loh KK, Kunaratnam N. Middle ear diseases in cleft palate patients in Singapore. Ann Acad Med Singap. 1988;17:372–4.PubMedGoogle Scholar
  23. 23.
    Kuo CL, Lien CF, Chu CH, et al. Otitis media with effusion in children with cleft lip and palate: a narrative review. Int J Pediatr Otorhinolaryngol. 2013;77:1403–9.CrossRefPubMedGoogle Scholar
  24. 24.
    James AL, Papsin BC. Some considerations in congenital cholesteatoma. Curr Opin Otolaryngol Head Neck Surg. 2013;21:431–9.CrossRefPubMedGoogle Scholar
  25. 25.
    Harris L, Cushing SL, Hubbard B, et al. Impact of cleft palate type on the incidence of acquired cholesteatoma. Int J Pediatr Otorhinolaryngol. 2013;77:695–8.CrossRefPubMedGoogle Scholar
  26. 26.
    Kuo CL, Shiao AS, Wen HC, et al. Increased risk of cholesteatoma among patients with allergic rhinitis: a nationwide investigation. Laryngoscope 2017;128:547–53.CrossRefPubMedGoogle Scholar
  27. 27.
    Kuo CL, Shiao AS, Yung M, et al. Updates and knowledge gaps in cholesteatoma research. Biomed Res Int. 2015;2015:1–17.Google Scholar
  28. 28.
    Michaels L. Origin of congenital cholesteatoma from a normally occurring epidermoid rest in the developing middle ear. Int J Pediatr Otorhinolaryngol. 1988;15:51–65.CrossRefPubMedGoogle Scholar
  29. 29.
    Levenson MJ, Michaels L, Parisier SC, et al. Congenital cholesteatomas in children: an embryologic correlation. Laryngoscope 1988;98:949–55.CrossRefPubMedGoogle Scholar
  30. 30.
    Aimi K. Role of the tympanic ring in the pathogenesis of congenital cholesteatoma. Laryngoscope 1983;93:1140–6.CrossRefPubMedGoogle Scholar
  31. 31.
    Tos M. A new pathogenesis of mesotympanic (congenital) cholesteatoma. Laryngoscope 2000;110:1890–7.CrossRefPubMedGoogle Scholar
  32. 32.
    Kuo CL. Etiopathogenesis of acquired cholesteatoma: prominent theories and recent advances in biomolecular research. Laryngoscope 2015;125:234–40.CrossRefPubMedGoogle Scholar
  33. 33.
    Sudhoff H, Tos M. Pathogenesis of attic cholesteatoma: clinical and immunohistochemical support for combination of retraction theory and proliferation theory. Am J Otol. 2000;21:786–92.PubMedGoogle Scholar
  34. 34.
    Karmody CS, Northrop C. The pathogenesis of acquired cholesteatoma of the human middle ear: support for the migration hypothesis. Otol Neurotol. 2012;33:42–7.CrossRefPubMedGoogle Scholar
  35. 35.
    Falcioni M, Taibah A, Rohit. Pulsatile tinnitus as a rare presenting symptom of residual cholesteatoma. J Laryngol Otol. 2004;118:165–6.CrossRefPubMedGoogle Scholar
  36. 36.
    Ahn JM, Huang CC, Abramson M. Localization of interleukin-1 in human cholesteatoma. Am J Otolaryngol. 1990;11:71–7.CrossRefPubMedGoogle Scholar
  37. 37.
    Venail F, Bonafe A, Poirrier V, et al. Comparison of echo-planar diffusion-weighted imaging and delayed postcontrast T1-weighted MR imaging for the detection of residual cholesteatoma. AJNR Am J Neuroradiol. 2008;29:1363–8.CrossRefPubMedGoogle Scholar
  38. 38.
    Corrales CE, Blevins NH. Imaging for evaluation of cholesteatoma: current concepts and future directions. Curr Opin Otolaryngol Head Neck Surg. 2013;21:461–7.CrossRefPubMedGoogle Scholar
  39. 39.
    Henninger B, Kremser C. Diffusion weighted imaging for the detection and evaluation of cholesteatoma. World J Radiol. 2017;28:217–22.CrossRefGoogle Scholar
  40. 40.
    Vercruysse JP, De Foer B, Pouillon M, et al. The value of diffusion-weighted MR imaging in the diagnosis of primary acquired and residual cholesteatoma: a surgical verified study of 100 patients. Eur Radiol. 2006;16:1461–7.CrossRefPubMedGoogle Scholar
  41. 41.
    Más-Estellés F, Mateos-Fernández M, Carrascosa-Bisquert B, et al. Contemporary non-echo-planar diffusion-weighted imaging of middle ear cholesteatomas. Radiographics. 2012;32:1197–213.CrossRefPubMedGoogle Scholar
  42. 42.
    Caponetti G, Thompson LD, Pantanowitz L. Cholesteatoma. Ear Nose Throat J. 2009;88:1196–8.PubMedGoogle Scholar
  43. 43.
    Bassiouny M, Badour N, Omran A, et al. Histopathological and immunohistochemical characteristics of acquired cholesteatoma in children and adults. EJENTAS 2012;13:7–12.Google Scholar
  44. 44.
    Rothschild S, Ciernik IF, Hartmann M, et al. Cholesteatoma triggering squamous cell carcinoma: case report and literature review of a rare tumor. Am J Otolaryngol. 2009;30:256–60.CrossRefPubMedGoogle Scholar
  45. 45.
    Hamed MA, Nakata S, Shiogama K, et al. Cytokeratin 13, Cytokeratin 17, and Ki-67 expression in human acquired cholesteatoma and their correlation with its destructive capacity. Clin Exp Otorhinolaryngol. 2017;10:213–20.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Chole RA, Tinling SP. Basal lamina breaks in the histogenesis of cholesteatoma. Laryngoscope 1985;95:270–5.CrossRefPubMedGoogle Scholar
  47. 47.
    Ferlito O, Devaney KO, Rinaldo A, et al. Clinicopathological consultation ear cholesteatoma versus cholesterol granuloma. Ann Otol Rhinol Laryngol. 1997;106:79–85.CrossRefPubMedGoogle Scholar
  48. 48.
    Preciado DA. Biology of cholesteatoma: special considerations in pediatric patients. Int J Pediatr Otorhinolaryngol. 2012;76:319–21.CrossRefPubMedGoogle Scholar
  49. 49.
    Maniu A, Harabagiu O, Perde Schrepler M, et al. Molecular biology of cholesteatoma. Rom J Morphol Embryol. 2014;55:7–13.PubMedGoogle Scholar
  50. 50.
    Sudhoff H, Dazert S, Gonzales AM, et al. Angiogenesis and angiogenic growth factors in middle ear cholesteatoma. Am J Otol. 2000;21:793–8.PubMedGoogle Scholar
  51. 51.
    Fukudome S, Wang C, Hamajima Y, et al. Regulation of the angiogenesis of acquired middle ear cholesteatomas by inhibitor of DNA binding transcription factor. JAMA Otolaryngol Head Neck Surg. 2013;139:273–8.CrossRefPubMedGoogle Scholar
  52. 52.
    Haruyama T, Furukawa M, Kusunoki T, et al. Expression of IL-17 and its role in bone destruction in human middle ear cholesteatoma. J Otorhinolaryngol Relat Spec. 2010;72:325–31.CrossRefGoogle Scholar
  53. 53.
    Olszewska E, Matulka M, Mroczko B, et al. Diagnostic value of matrix metalloproteinase 9 and tissue inhibitor of matrix metalloproteinases 1 in cholesteatoma. Histol Histopathol. 2016;31:307–15.PubMedGoogle Scholar
  54. 54.
    Chen AP, Wang B, Zhong F, et al. Expression levels of receptor activator of nuclear factor-κB ligand and osteoprotegerin are associated with middle ear cholesteatoma risk. Acta Otolaryngol. 2015;135:655–66.CrossRefPubMedGoogle Scholar
  55. 55.
    Kuo CL, Liao WH, Shiao, AS. A review of current progress in acquired cholesteatoma management. Eur Arch Otorhinolaryngol. 2015;272:3601–9.CrossRefPubMedGoogle Scholar
  56. 56.
    Morita Y, Takahashi K, Izumi S, et al. Risk factors of recurrence in pediatric congenital cholesteatoma. Otol Neurotol. 2017;38:1463–9.CrossRefPubMedGoogle Scholar
  57. 57.
    Vital V. Pediatric cholesteatoma: personal experience and review of the literature. Otorhinolaryngol Head Neck Surg. 2011;45:5–14.Google Scholar
  58. 58.
    Zhang H, Wong PY, Magos T, et al. Use of narrow band imaging and 4K technology in otology and neuro-otology: preliminary experience and feasibility study. Eur Arch Otorhinolaryngol. 2017;275:301–5.CrossRefPubMedGoogle Scholar
  59. 59.
    Tomlin J, Chang D, McCutcheon B, et al. Surgical technique and recurrence in cholesteatoma: a meta-analysis. Audiol Neurootol. 2013;18:135–42.CrossRefPubMedGoogle Scholar

Copyright information

© This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply  2018

Authors and Affiliations

  1. 1.Department of Oral & Maxillofacial Pathology, Naval Postgraduate Dental SchoolNaval Medical Professional Development CenterBethesdaUSA

Personalised recommendations