Head and Neck Pathology

, Volume 6, Issue 2, pp 232–243

Cytoplasmic Ezrin and Moesin Correlate with Poor Survival in Head and Neck Squamous Cell Carcinoma

  • Nicolas F. Schlecht
  • Margaret Brandwein-Gensler
  • Richard V. Smith
  • Nicole Kawachi
  • Darcy Broughel
  • Juan Lin
  • Christian E. Keller
  • Paul A. Reynolds
  • Frank J. Gunn-Moore
  • Thomas Harris
  • Geoffrey Childs
  • Thomas J. Belbin
  • Michael B. Prystowsky
Original Paper

Abstract

Members of the 4.1 superfamily of proteins, including ezrin, moesin, merlin, and willin regulate many normal physiologic processes such as cellular shape, motility, and proliferation. In addition, they contribute both to tumor development and tumor progression. We reported previously that strong cytoplasmic ezrin expression was independently associated with poorer patient survival. One hundred and thirty-one histologically confirmed primary head and neck squamous cell carcinomas were examined prospectively for cancer progression and survival at a large health care center in the Bronx, NY, USA. Immunohistochemical analysis of ezrin, moesin, merlin, and willin expression in tissue microarray samples of primary head and neck squamous cell carcinoma revealed a significant association of increased cytoplasmic ezrin with poor cancer survival. Global RNA analyses suggest that cancers with high cytoplasmic ezrin have a more invasive phenotype. This study supports our previous findings associating cytoplasmic ezrin with more aggressive behavior and poorer outcome and indicates the need for a multi-institutional study to validate the use of cytoplasmic ezrin as a biomarker for treatment planning in head and neck squamous cell carcinoma.

Keywords

Head and neck cancer Ezrin Moesin Willin Merlin Immunohistochemistry Survival 

References

  1. 1.
    Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin. 2011;61:69–90.PubMedCrossRefGoogle Scholar
  2. 2.
    Belbin TJ, Singh B, Smith RV, et al. Molecular profiling of tumor progression in head and neck cancer. Arch Otolaryngol Head Neck Surg. 2005;131:10–8.PubMedCrossRefGoogle Scholar
  3. 3.
    Fehon RG, McClatchey AI, Bretscher A. Organizing the cell cortex: the role of ERM proteins. Natl Rev Mol Cell Biol. 2010;11:276–87.CrossRefGoogle Scholar
  4. 4.
    Sudol M, Harvey KF. Modularity in the Hippo signaling pathway. Trends Biochem Sci. 2010;35:627–33.PubMedCrossRefGoogle Scholar
  5. 5.
    Bao Y, Hata Y, Ikeda M, Withanage K. Mammalian Hippo pathway: from development to cancer and beyond [in process citation]. J Biochem. 2011;149:361–79.PubMedCrossRefGoogle Scholar
  6. 6.
    Angus L, Moleirinho S, Herron LR, et al. Willin/FRMD6 expression activates the hippo signaling pathway kinases in mammals and antagonizes oncogenic YAP. Oncogene. 2011. doi:10.1038/onc.2011.224.
  7. 7.
    Berryman M, Franck Z, Bretscher A. Ezrin is concentrated in the apical microvilli of a wide variety of epithelial cells whereas moesin is found primarily in endothelial cells. J Cell Sci. 1993;105:1025–43.PubMedGoogle Scholar
  8. 8.
    Schwartz-Albiez R, Merling A, Spring H, Moller P, Koretz K. Differential expression of the microspike-associated protein moesin in human tissues. Eur J Cell Biol. 1995;67:189–98.PubMedGoogle Scholar
  9. 9.
    Bretscher A, Edwards K, Fehon RG. ERM proteins and merlin: integrators at the cell cortex. Natl Rev Mol Cell Biol. 2002;3:586–99.CrossRefGoogle Scholar
  10. 10.
    Hunter KW. Ezrin, a key component in tumor metastasis. Trends Mol Med. 2004;10:201–4.PubMedCrossRefGoogle Scholar
  11. 11.
    Heiska L, Melikova M, Zhao F, Saotome I, McClatchey AI, Carpen O. Ezrin is key regulator of Src-induced malignant phenotype in three-dimensional environment [epub ahead of print] [record supplied by publisher]. 2011 Oncogene.Google Scholar
  12. 12.
    Ichikawa T, Masumoto J, Kaneko M, Saida T, Sagara J, Taniguchi S. Expression of moesin and its associated molecule CD44 in epithelial skin tumors. J Cutan Pathol. 1998;25:237–43.PubMedCrossRefGoogle Scholar
  13. 13.
    Kobayashi H, Sagara J, Masuumoto J, Kurita H, Kurashina K, Tokunaga J. Shifts in cellular localization of moesin in normal oral epithelium, oral epithelial dysplasia, verrucous carcinoma and oral squamous cell carcinoma. J Oral Pathol Med. 2003;32:344–9.PubMedCrossRefGoogle Scholar
  14. 14.
    Kobayashi H, Sagara J, Kurita H, et al. Clinical significance of cellular distribution of moesin in patients with oral squamous cell carcinoma. Clin Cancer Res. 2004;10:572–80.PubMedCrossRefGoogle Scholar
  15. 15.
    Madan R, Brandwein-Gensler M, Schlecht NF, et al. Differential tissue and subcellular expression of ERM proteins in normal and malignant tissues: cytoplasmic ezrin expression has prognostic significance for head and neck squamous cell carcinoma. Head Neck. 2006;28:1018–27.PubMedCrossRefGoogle Scholar
  16. 16.
    Bruce B, Khanna G, Ren L, et al. Expression of the cytoskeleton linker protein ezrin in human cancers. Clin Exp Metastasis. 2007;24:69–78.PubMedCrossRefGoogle Scholar
  17. 17.
    Elzagheid A, Korkeila E, Bendardaf R, et al. Intense cytoplasmic ezrin immunoreactivity predicts poor survival in colorectal cancer. Hum Pathol. 2008;39:1737–43.PubMedCrossRefGoogle Scholar
  18. 18.
    Kobel M, Langhammer T, Huttelmaier S, et al. Ezrin expression is related to poor prognosis in FIGO stage I endometrioid carcinomas. Mod Pathol. 2006;19:581–7.PubMedCrossRefGoogle Scholar
  19. 19.
    Mhawech-Fauceglia P, Dulguerov P, Beck A, Bonet M, Allal AS. Value of ezrin, maspin and nm 23-H1 protein expressions in predicting outcome of patients with head and neck squamous-cell carcinoma treated with radical radiotherapy. J Clin Pathol. 2007;60:185–9.PubMedCrossRefGoogle Scholar
  20. 20.
    Yeh CN, Pang ST, Chen TW, Wu RC, Weng WH, Chen MF. Expression of ezrin is associated with invasion and dedifferentiation of hepatitis B related hepatocellular carcinoma. BMC Cancer. 2009;9:233.PubMedCrossRefGoogle Scholar
  21. 21.
    Zhang Y, Hu MY, Wu WZ, et al. The membrane-cytoskeleton organizer ezrin is necessary for hepatocellular carcinoma cell growth and invasiveness. J Cancer Res Clin Oncol. 2006;132:685–97.PubMedCrossRefGoogle Scholar
  22. 22.
    Belbin TJ, Singh B, Smith RV, et al. Molecular profiling of tumor progression in head and neck cancer. Arch Otolaryngol Head Neck Surg. 2005;131:10–8.PubMedCrossRefGoogle Scholar
  23. 23.
    Schlecht NF, Brandwein-Gensler M, Nuovo GJ, et al. A comparison of clinically utilized human papillomavirus detection methods in head and neck cancer [epub ahead of print] [record supplied by publisher]. Mod Pathol. 2011.Google Scholar
  24. 24.
    Greenland S, Robins JM. Identifiability, exchangeability, and epidemiological confounding. Int J Epidemiol. 1986;15:413–9.PubMedCrossRefGoogle Scholar
  25. 25.
    Lucke CD, Philpott A, Metcalfe JC, et al. Inhibiting mutations in the transforming growth factor beta type 2 receptor in recurrent human breast cancer. Cancer Res. 2001;61:482–5.PubMedGoogle Scholar
  26. 26.
    Cullis DN, Philip B, Baleja JD, Feig LA. Rab11-FIP2, an adaptor protein connecting cellular components involved in internalization and recycling of epidermal growth factor receptors. J Biol Chem. 2002;277:49158–66.PubMedCrossRefGoogle Scholar
  27. 27.
    Iyer AK, Tran KT, Griffith L, Wells A. Cell surface restriction of EGFR by a tenascin cytotactin-encoded EGF-like repeat is preferential for motility-related signaling. J Cell Physiol. 2008;214:504–12.PubMedCrossRefGoogle Scholar
  28. 28.
    Haugh JM. Localization of receptor-mediated signal transduction pathways: the inside story. Mol Interv. 2002;2:292–307.PubMedCrossRefGoogle Scholar
  29. 29.
    Xu Y, Baker D, Quan T, Baldassare JJ, Voorhees JJ, Fisher GJ. Receptor type protein tyrosine phosphatase-kappa mediates cross-talk between transforming growth factor-beta and epidermal growth factor receptor signaling pathways in human keratinocytes. Mol Biol Cell. 2010;21:29–35.PubMedCrossRefGoogle Scholar
  30. 30.
    Chen Y, Knosel T, Ye F, Pacyna-Gengelbach M, Deutschmann N, Petersen I. Decreased PITX1 homeobox gene expression in human lung cancer. Lung Cancer. 2007;55:287–94.PubMedCrossRefGoogle Scholar
  31. 31.
    Kolfschoten IG, van Leeuwen B, Berns K, et al. A genetic screen identifies PITX1 as a suppressor of RAS activity and tumorigenicity. Cell. 2005;121:849–58.PubMedCrossRefGoogle Scholar
  32. 32.
    Feng Q, Sekula D, Guo Y, et al. UBE1L causes lung cancer growth suppression by targeting cyclin D1. Mol Cancer Ther. 2008;7:3780–8.PubMedCrossRefGoogle Scholar
  33. 33.
    Bennett KL, Romigh T, Arab K, et al. Activator protein 2 alpha (AP2alpha) suppresses 42 kDa C/CAAT enhancer binding protein alpha (p42(C/EBPalpha)) in head and neck squamous cell carcinoma. Int J Cancer. 2009;124:1285–92.PubMedCrossRefGoogle Scholar
  34. 34.
    Knauf U, Tschopp C, Gram H. Negative regulation of protein translation by mitogen-activated protein kinase-interacting kinases 1 and 2. Mol Cell Biol. 2001;21:5500–11.PubMedCrossRefGoogle Scholar
  35. 35.
    Toledano-Katchalski H, Kraut J, Sines T, et al. Protein tyrosine phosphatase epsilon inhibits signaling by mitogen-activated protein kinases. Mol Cancer Res. 2003;1:541–50.PubMedGoogle Scholar
  36. 36.
    Kraut-Cohen J, Muller WJ, Elson A. Protein-tyrosine phosphatase epsilon regulates Shc signaling in a kinase-specific manner: increasing coherence in tyrosine phosphatase signaling. J Biol Chem. 2008;283:4612–21.PubMedCrossRefGoogle Scholar
  37. 37.
    Lefort K, Mandinova A, Ostano P, et al. Notch1 is a p53 target gene involved in human keratinocyte tumor suppression through negative regulation of ROCK1/2 and MRCKalpha kinases. Genes Dev. 2007;21:562–77.PubMedCrossRefGoogle Scholar
  38. 38.
    Agrawal N, Frederick MJ, Pickering CR, et al. Exome sequencing of head and neck squamous cell carcinoma reveals inactivating mutations in NOTCH1. Science. 2011;333:1154–7.PubMedCrossRefGoogle Scholar
  39. 39.
    Wang NJ, Sanborn Z, Arnett KL, et al. Loss-of-function mutations in Notch receptors in cutaneous and lung squamous cell carcinoma [in process citation]. Proc Natl Acad Sci USA. 2011;108:17761–6.PubMedCrossRefGoogle Scholar
  40. 40.
    Tachibana M, Tonomoto Y, Hyakudomi R, et al. Expression and prognostic significance of EFNB2 and EphB4 genes in patients with oesophageal squamous cell carcinoma. Dig Liver Dis. 2007;39:725–32.PubMedCrossRefGoogle Scholar
  41. 41.
    Fujimoto J, Aoki I, Toyoki H, et al. Clinical implications of expression of ETS-1 related to angiogenesis in metastatic lesions of ovarian cancers. Oncology. 2004;66:420–8.PubMedCrossRefGoogle Scholar
  42. 42.
    Lee J, Moon HJ, Lee JM, Joo CK. Smad3 regulates Rho signaling via NET1 in the transforming growth factor-beta-induced epithelial-mesenchymal transition of human retinal pigment epithelial cells. J Biol Chem. 2010;285:26618–27.PubMedCrossRefGoogle Scholar
  43. 43.
    Lemmers C, Michel D, Lane-Guermonprez L, et al. CRB3 binds directly to Par6 and regulates the morphogenesis of the tight junctions in mammalian epithelial cells. Mol Biol Cell. 2004;15:1324–33.PubMedCrossRefGoogle Scholar
  44. 44.
    Mirza R, Hayasaka S, Takagishi Y, et al. DHCR24 gene knockout mice demonstrate lethal dermopathy with differentiation and maturation defects in the epidermis. J Invest Dermatol. 2006;126:638–47.PubMedCrossRefGoogle Scholar
  45. 45.
    Fukui Y, Masuda H, Takagi M, Takahashi K, Kiyokane K. The presence of h2-calponin in human keratinocyte. J Dermatol Sci. 1997;14:29–36.PubMedCrossRefGoogle Scholar
  46. 46.
    Kameda H, Watanabe M, Bohgaki M, Tsukiyama T, Hatakeyama S. Inhibition of NF-kappaB signaling via tyrosine phosphorylation of Ymer. Biochem Biophys Res Commun. 2009;378:744–9.PubMedCrossRefGoogle Scholar
  47. 47.
    Yamaguchi H, Wang HG. Tissue transglutaminase serves as an inhibitor of apoptosis by cross-linking caspase 3 in thapsigargin-treated cells. Mol Cell Biol. 2006;26:569–79.PubMedCrossRefGoogle Scholar
  48. 48.
    Wang Z, Cao N, Nantajit D, Fan M, Liu Y, Li JJ. Mitogen-activated protein kinase phosphatase-1 represses c-Jun NH2-terminal kinase-mediated apoptosis via NF-kappaB regulation. J Biol Chem. 2008;283:21011–23.PubMedCrossRefGoogle Scholar
  49. 49.
    Ehsanian R, Brown M, Lu H, et al. YAP dysregulation by phosphorylation or <Np63-mediated gene repression promotes proliferation, survival and migration in head and neck cancer subsets. Oncogene. 2010;29:6160–71.PubMedCrossRefGoogle Scholar
  50. 50.
    McShane LM, Altman DG, Sauerbrei W, Taube SE, Gion M, Clark GM. Reporting recommendations for tumor marker prognostic studies (REMARK). J Natl Cancer Inst. 2005;97:1180–4.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Nicolas F. Schlecht
    • 1
    • 2
  • Margaret Brandwein-Gensler
    • 3
  • Richard V. Smith
    • 4
  • Nicole Kawachi
    • 5
  • Darcy Broughel
    • 5
  • Juan Lin
    • 1
  • Christian E. Keller
    • 5
  • Paul A. Reynolds
    • 6
  • Frank J. Gunn-Moore
    • 7
  • Thomas Harris
    • 5
  • Geoffrey Childs
    • 5
  • Thomas J. Belbin
    • 5
  • Michael B. Prystowsky
    • 5
  1. 1.Department of Epidemiology and Population HealthAlbert Einstein College of Medicine and Montefiore Medical CenterBronxUSA
  2. 2.Department of MedicineAlbert Einstein College of Medicine and Montefiore Medical CenterBronxUSA
  3. 3.Department of PathologyUniversity of Alabama BirminghamBirminghamUSA
  4. 4.Department of Otorhinolaryngology, Head and Neck SurgeryAlbert Einstein College of Medicine and Montefiore Medical CenterBronxUSA
  5. 5.Department of PathologyAlbert Einstein College of Medicine and Montefiore Medical CenterBronxUSA
  6. 6.School of MedicineUniversity of St AndrewsSt AndrewsScotland, UK
  7. 7.School of BiologyUniversity of St AndrewsSt AndrewsScotland, UK

Personalised recommendations