NMR assignments of human linker histone H1x N-terminal domain and globular domain in the presence and absence of perchlorate

  • Herna de Wit
  • Alicia Vallet
  • Bernhard Brutscher
  • Gerrit KoorsenEmail author


Human linker histone H1 plays a seminal role in eukaryotic DNA packaging. H1 has a tripartite structure consisting of a central, conserved globular domain, which adopts a winged-helix fold, flanked by two variable N- and C-terminal domains. Here we present the backbone resonance assignments of the N-terminal domain and globular domain of human linker histone H1x in the presence and absence of the secondary structure stabilizer sodium perchlorate. Analysis of chemical shift changes between the two conditions is consistent with induction of transient secondary structural elements in the N-terminal domain of H1x in high ionic strength, which suggests that the N-terminal domain adopts significant alpha-helical conformations in the presence of DNA.


Human linker histone H1x Intrinsically disordered protein Chromatin organization NMR backbone resonance assignment 



Financial support from the IR-RMN-THC FR 3050 CNRS (France) and NRF TTK14052667899 (South Africa) for conducting this research is gratefully acknowledged.


  1. Ahmad J, Farhana A, Pancsa R, Arora SK, Srinivasan A, Tyagi AK, Babu MM, Ehtesham NZ, Hasnain SE (2018) Contrasting function of structured N-terminal and unstructured C-terminal segments of Mycobacterium tuberculosis PPE37 protein. mBio. Google Scholar
  2. Bannister AJ, Kouzarides T (2011) Regulation of chromatin by histone modifications. Cell Res 21:381–395. CrossRefGoogle Scholar
  3. Bates DL, Thomas JO (1981) Histones H1 and H5: one or two molecules per nucleosome? Nucleic Acids Res 9:5883–5894CrossRefGoogle Scholar
  4. Böhm L, Mitchell TC (1985) Sequence conservation in the N-terminal domain of histone H1. FEBS Lett 193:1–4CrossRefGoogle Scholar
  5. Cavanagh J, Fairbrother WJ, Palmer AG, Rance M, Skelton NJ (2007) CHAPTER 7—Heteronuclear NMR experiments, in: Cavanagh J, Fairbrother WJ, Palmer AG, Rance M, Skelton NJ (Eds.), Protein NMR spectroscopy (2 edn). Academic Press, Burlington, pp 533–678. CrossRefGoogle Scholar
  6. Chen R, Kang R, Fan X-G, Tang D (2014) Release and activity of histone in diseases. Cell Death Dis 5:e1370. CrossRefGoogle Scholar
  7. Clark DJ, Hill CS, Martin SR, Thomas JO (1988) Alpha-helix in the carboxy-terminal domains of histones H1 and H5. EMBO J 7:69–75CrossRefGoogle Scholar
  8. Crane-Robinson C (2016) Linker histones: history and current perspectives. Biochim Biophys Acta 1859:431–435. CrossRefGoogle Scholar
  9. Eletsky A, Lee D, Kohan E, Gaetano T, Montelione H, Janjua H-W, Lee JH, Prestegard JK, Everett R, Thomas S (2012) Solution NMR Structure of the Globular Domain of Human Histone H1x, Northeast Structural Genomics Consortium (NESG) Target HR7057A” To be published;
  10. Favier A, Brutscher B (2011) Recovering lost magnetization: polarization enhancement in biomolecular NMR. J Biomol NMR 49:9–15. CrossRefGoogle Scholar
  11. Hansen JC, Connolly M, McDonald CJ, Pan A, Pryamkova A, Ray K, Seidel E, Tamura S, Rogge R, Maeshima K (2017) The 10-nm chromatin fiber and its relationship to interphase chromosome organization. Biochem Soc Trans. Google Scholar
  12. Happel N, Schulze E, Doenecke D (2005) Characterisation of human histone H1x. Biol Chem 386:541–551. CrossRefGoogle Scholar
  13. Harshman SW, Young NL, Parthun MR, Freitas MA (2013) H1 histones: current perspectives and challenges. Nucleic Acids Res 41:9593–9609. CrossRefGoogle Scholar
  14. Hayakawa K, Ohgane J, Tanaka S, Yagi S, Shiota K (2012) Oocyte-specific linker histone H1foo is an epigenomic modulator that decondenses chromatin and impairs pluripotency. Epigenetics 7:1029–1036. CrossRefGoogle Scholar
  15. Kamieniarz K, Izzo A, Dundr M, Tropberger P, Ozretić L, Kirfel J, Scheer E, Tropel P, Wiśniewski JR, Tora L, Viville S, Buettner R, Schneider R (2012) A dual role of linker histone H1.4 Lys 34 acetylation in transcriptional activation. Genes Dev 26:797–802. CrossRefGoogle Scholar
  16. Lescop E, Rasia R, Brutscher B (2008) Hadamard amino-acid-type edited NMR experiment for fast protein resonance assignment. J Am Chem Soc 130:5014–5015. CrossRefGoogle Scholar
  17. Luger K, Mäder AW, Richmond RK, Sargent DF, Richmond TJ (1997) Crystal structure of the nucleosome core particle at 2.8 Å resolution. Nature 389:251–260. ADSCrossRefGoogle Scholar
  18. Mayor R, Izquierdo-Bouldstridge A, Millán-Ariño L, Bustillos A, Sampaio C, Luque N, Jordan A (2015) Genome distribution of replication-independent histone H1 variants shows H1.0 associated with nucleolar domains and H1X associated with RNA polymerase II-enriched regions. J Biol Chem 290:7474–7491. CrossRefGoogle Scholar
  19. Sepsa A, Levidou G, Gargalionis A, Adamopoulos C, Spyropoulou A, Dalagiorgou G, Thymara I, Boviatsis E, Themistocleous MS, Petraki K, Vrettakos G, Samaras V, Zisakis A, Patsouris E, Piperi C, Korkolopoulou P (2015) Emerging role of linker histone variant H1x as a biomarker with prognostic value in astrocytic gliomas. A multivariate analysis including trimethylation of H3K9 and H4K20. PLoS ONE 10:e0115101. CrossRefGoogle Scholar
  20. Shahhoseini M, Favaedi R, Baharvand H, Sharma V, Stunnenberg HG (2010) Evidence for a dynamic role of the linker histone variant H1x during retinoic acid-induced differentiation of NT2 cells. FEBS Lett 584:4661–4664. CrossRefGoogle Scholar
  21. Simpson RT (1978) Structure of the chromatosome, a chromatin particle containing 160 base pairs of DNA and all the histones. Biochemistry 17:5524–5531. CrossRefGoogle Scholar
  22. Solyom Z, Schwarten M, Geist L, Konrat R, Willbold D, Brutscher B (2013) BEST-TROSY experiments for time-efficient sequential resonance assignment of large disordered proteins. J Biomol NMR 55:311–321. CrossRefGoogle Scholar
  23. Song F, Chen P, Sun D, Wang M, Dong L, Liang D, Xu R-M, Zhu P, Li G (2014) Cryo-EM study of the chromatin fiber reveals a double helix twisted by tetranucleosomal units. Science 344:376–380. ADSCrossRefGoogle Scholar
  24. Tamiola K, Mulder FAA (2012) Using NMR chemical shifts to calculate the propensity for structural order and disorder in proteins. Biochem Soc Trans 40:1014–1020. CrossRefGoogle Scholar
  25. Vila R, Ponte I, Collado M, Arrondo JLR, Jiménez MA, Rico M, Suau P (2001) DNA-induced α-helical structure in the NH2-terminal domain of histone H1. J Biol Chem 276:46429–46435. CrossRefGoogle Scholar
  26. Vranken WF, Boucher W, Stevens TJ, Fogh RH, Pajon A, Llinas M, Ulrich EL, Markley JL, Ionides J, Laue ED (2005) The CCPN data model for NMR spectroscopy: development of a software pipeline. Proteins Struct Funct Bioinform 59:687–696. CrossRefGoogle Scholar
  27. Zhao Y, Garcia BA (2015) Comprehensive catalog of currently documented histone modifications. Cold Spring Harb Perspect Biol. Google Scholar
  28. Zhou B-R, Feng H, Kato H, Dai L, Yang Y, Zhou Y, Bai Y (2013) Structural insights into the histone H1-nucleosome complex. Proc Natl Acad Sci USA 110:19390–19395. ADSCrossRefGoogle Scholar
  29. Zhou B-R, Feng H, Ghirlando R, Li S, Schwieters CD, Bai Y (2016) A small number of residues can determine if linker histones are bound on or off dyad in the chromatosome. J Mol Biol 428:3948–3959. CrossRefGoogle Scholar
  30. Zlatanova J, van Holde K (1996) The linker histones and chromatin structure: new twists, in: Cohn WE, Moldave K (eds), Progress in nucleic acid research and molecular biology. Academic Press, Cambridge, pp. 217–259. Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.University of JohannesburgAuckland Park, JohannesburgSouth Africa
  2. 2.University Grenoble Alpes, CEA, CNRS, IBSGrenobleFrance

Personalised recommendations