Biomolecular NMR Assignments

, Volume 13, Issue 1, pp 201–205 | Cite as

Chemical shift assignments of retinal guanylyl cyclase activating protein 5 (GCAP5)

  • Diana Cudia
  • James B. AmesEmail author


Retinal membrane guanylyl cyclase (RetGC) in photoreceptor rod and cone cells is regulated by a family of guanylyl cyclase activating proteins (GCAP1-7). GCAP5 is expressed in zebrafish photoreceptors and promotes Ca2+-dependent regulation of RetGC enzymatic activity that regulates visual phototransduction. We report NMR chemical shift assignments of the Ca2+-free activator form of GCAP5 (BMRB No. 27705).


Retinal guanylyl cyclase RetGC GCAP5 EF-hand Phototransduction 



We thank Jeff Walton for technical support and help with NMR experiments. Work supported by NIH Grant No. (EY012347) to J.B.A.


  1. Arshavsky VY, Burns ME (2014) Current understanding of signal amplification in phototransduction. Cell Logist 4:e29390CrossRefGoogle Scholar
  2. Burgoyne RD (2007) Neuronal calcium sensor proteins: generating diversity in neuronal Ca2+ signalling. Nat Rev Neurosci 8:182–193CrossRefGoogle Scholar
  3. Delaglio F, Grzesiek S, Vuister GW, Zhu G, Pfeiffer J, Bax A (1995) NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J Biomol NMR 6:277–293CrossRefGoogle Scholar
  4. Ikura M, Kay LE, Bax A (1990) A novel approach for sequential assignment of 1H, 13C, and 15N spectra of proteins: heteronuclear triple-resonance three-dimensional NMR spectroscopy. Application to calmodulin. Biochemistry 29:4659–4667CrossRefGoogle Scholar
  5. Ikura M, Spera S, Barbato G, Kay LE, Krinks M, Bax A (1991) Secondary structure and side-chain 1H and 13C resonance assignments of calmodulin in solution by heteronuclear multidimensional NMR spectroscopy. Biochemistry 30:9216–9228CrossRefGoogle Scholar
  6. Jiang L, Baehr W (2010) GCAP1 mutations associated with autosomal dominant cone dystrophy. Adv Exp Med Biol 664:273–282CrossRefGoogle Scholar
  7. Koch KW, Helten A (2008) Guanylate cyclase-based signaling in photoreceptors and retina. In: Fliesler SJ, Kisselev OG (eds) Signal transduction in the retina, vol 6. Taylor and Francis CRC Press, Boca Raton, pp 121–143Google Scholar
  8. Koch KW, Stryer L (1988) Highly cooperative feedback control of retinal rod guanylate cyclase by calcium ions. Nature 334:64–66ADSCrossRefGoogle Scholar
  9. Lee W, Tonelli M, Markley JL (2015) NMRFAM-SPARKY: enhanced software for biomolecular NMR spectroscopy. Bioinformatics 31:1325–1327CrossRefGoogle Scholar
  10. Lim S, Peshenko IV, Dizhoor AM, Ames JB (2013) Structural insights for activation of retinal guanylate cyclase by GCAP1. PLoS ONE 8:e81822ADSCrossRefGoogle Scholar
  11. Lim S, Dizhoor AM, Ames JB (2014) Structural diversity of neuronal calcium sensor proteins and insights for activation of retinal guanylyl cyclase by GCAP1. Front Mol Neurosci 7:19CrossRefGoogle Scholar
  12. Lim S, Peshenko IV, Olshevskaya EV, Dizhoor AM, Ames JB (2016) Structure of guanylyl cyclase activator protein 1 (GCAP1) mutant V77E in a Ca2+-free/Mg2+-bound activator state. J Biol Chem 291:4429–4441CrossRefGoogle Scholar
  13. Lim S, Scholten A, Manchala G, Cudia D, Zlomke-Sell SK, Koch KW, Ames JB (2017) Structural characterization of ferrous ion binding to retinal guanylate cyclase activator protein 5 from zebrafish photoreceptors. Biochemistry 56:6652–6661CrossRefGoogle Scholar
  14. Palczewski K, Subbaraya I, Gorczyca WA, Helekar BS, Ruiz CC, Ohguro H, Huang J, Zhao X, Crabb JW, Johnson RS (1994) Molecular cloning and characterization of retinal photoreceptor guanylyl cyclase-activating protein. Neuron 13:395–404CrossRefGoogle Scholar
  15. Payne AM, Downes SM, Bessant DA, Taylor R, Holder GE, Warren MJ, Bird AC, Bhattacharya SS (1998) A mutation in guanylate cyclase activator 1A (GUCA1A) in an autosomal dominant cone dystrophy pedigree mapping to a new locus on chromosome 6p21.1. Hum Mol Genet 7:273–277CrossRefGoogle Scholar
  16. Peshenko IV, Dizhoor AM (2006) Ca2+ and Mg2+ binding properties of GCAP-1. Evidence that Mg2+-bound form is the physiological activator of photoreceptor guanylyl cyclase. J Biol Chem 281:23830–23841CrossRefGoogle Scholar
  17. Peshenko IV, Dizhoor AM (2007) Activation and inhibition of photoreceptor guanylyl cyclase by guanylyl cyclase activating protein 1 (GCAP-1): the functional role of Mg2+/Ca2+ exchange in EF-hand domains. J Biol Chem 282:21645–21652CrossRefGoogle Scholar
  18. Shen Y, Delaglio F, Cornilescu G, Bax A (2009) TALOS+: a hybrid method for predicting protein backbone torsion angles from NMR chemical shifts. J Biomol NMR 44:213–223CrossRefGoogle Scholar
  19. Stephen R, Bereta G, Golczak M, Palczewski K, Sousa MC (2007) Stabilizing function for myristoyl group revealed by the crystal structure of a neuronal calcium sensor, guanylate cyclase-activating protein 1. Structure 15:1392–1402CrossRefGoogle Scholar
  20. Wishart DS, Sykes BD, Richards FM (1992) The chemical shift index: a fast and simple method for the assignment of protein secondary structure through NMR spectroscopy. Biochemistry 31:1647–1651CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of ChemistryUniversity of CaliforniaDavisUSA

Personalised recommendations