Advertisement

Biomolecular NMR Assignments

, Volume 13, Issue 1, pp 195–199 | Cite as

NMR chemical shift assignment of the C-terminal region of the Menangle virus phosphoprotein

  • N. Herr
  • M. N. Webby
  • E. M. M. Bulloch
  • M. Schmitz
  • R. L. KingstonEmail author
Article

Abstract

Menangle virus is a bat-borne paramyxovirus with zoonotic potential. The single-stranded RNA genome of the virus is encapsidated in a helical nucleocapsid which is the template for both transcription and genome replication. Each of these operations is performed by the viral RNA polymerase. The phosphoprotein is the non-catalytic subunit of the polymerase, and its C-terminal region enables the polymerase to engage with the nucleocapsid. Here, we report the 1H, 15N, and 13C chemical shift assignments of the C-terminal region (amino acids 267–388) of the Menangle virus phosphoprotein. This region has a bipartite character, with a highly flexible and structurally disordered sequence preceding a structured nucleocapsid-binding domain. NMR chemical shift assignment will enable the detailed characterization of the dynamic behavior of the phosphoprotein, and its functional linkage with polymerase translocation.

Keywords

Rubulavirus Negative-sense single stranded RNA viruses RNA-dependent RNA polymerase Intrinsically disordered proteins 

Notes

Acknowledgements

We thank Junji Iwahara (UTMB) for the sharing of pulse programs. This work was funded by a RSNZ Marsden Grant (UOA1202).

Supplementary material

12104_2019_9876_MOESM1_ESM.pdf (123 kb)
Supplementary material 1 (PDF 123 KB)

References

  1. André I, Linse S, Mulder FAA (2007) Residue-specific pKa determination of lysine and arginine side chains by indirect 15N and 13C NMR spectroscopy: application to apo calmodulin. J Am Chem Soc 129:15805–15813.  https://doi.org/10.1021/ja0721824 CrossRefGoogle Scholar
  2. Barr JA, Smith C, Marsh GA et al (2012) Evidence of bat origin for Menangle virus, a zoonotic paramyxovirus first isolated from diseased pigs. J Gen Virol 93:2590–2594.  https://doi.org/10.1099/vir.0.045385-0 CrossRefGoogle Scholar
  3. Cox R, Plemper RK (2015) The paramyxovirus polymerase complex as a target for next-generation anti-paramyxovirus therapeutics. Front Microbiol 6:459.  https://doi.org/10.3389/fmicb.2015.00459 CrossRefGoogle Scholar
  4. Delaglio F, Grzesiek S, Vuister GW et al (1995) NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J Biomol NMR 6:277–293CrossRefGoogle Scholar
  5. Esadze A, Zandarashvili L, Iwahara J (2014) Effective strategy to assign 1H-15N heteronuclear correlation NMR signals from lysine side-chain NH3+ groups of proteins at low temperature. J Biomol NMR 60:23–27.  https://doi.org/10.1007/s10858-014-9854-y CrossRefGoogle Scholar
  6. Findeisen M, Brand T, Berger S (2007) A 1H-NMR thermometer suitable for cryoprobes. Magn Reson Chem: MRC 45:175–178.  https://doi.org/10.1002/mrc.1941 CrossRefGoogle Scholar
  7. Houben K, Blanchard L, Blackledge M, Marion D (2007) Intrinsic dynamics of the partly unstructured PX domain from the Sendai virus RNA polymerase cofactor P. Biophys J 93:2830–2844.  https://doi.org/10.1529/biophysj.107.108829 CrossRefGoogle Scholar
  8. Hyberts SG, Milbradt AG, Wagner AB et al (2012) Application of iterative soft thresholding for fast reconstruction of NMR data non-uniformly sampled with multidimensional poisson gap scheduling. J Biomol NMR 52:315–327.  https://doi.org/10.1007/s10858-012-9611-z CrossRefGoogle Scholar
  9. Longhi S, Bloyet L-M, Gianni S, Gerlier D (2017) How order and disorder within paramyxoviral nucleoproteins and phosphoproteins orchestrate the molecular interplay of transcription and replication. Cell Mol Life Sci 74:3091–3118.  https://doi.org/10.1007/s00018-017-2556-3 CrossRefGoogle Scholar
  10. Marley J, Lu M, Bracken C (2001) A method for efficient isotopic labeling of recombinant proteins. J Biomol NMR 20:71–75CrossRefGoogle Scholar
  11. Mori S, Abeygunawardana C, Johnson MO, van Zijl PC (1995) Improved sensitivity of HSQC spectra of exchanging protons at short interscan delays using a new fast HSQC (FHSQC) detection scheme that avoids water saturation. J Magn Reson Ser B 108:94–98CrossRefGoogle Scholar
  12. Niklasson M, Otten R, Ahlner A et al (2017) Comprehensive analysis of NMR data using advanced line shape fitting. J Biomol NMR 56:191–197.  https://doi.org/10.1007/s10858-017-0141-6 Google Scholar
  13. Pettersen EF, Goddard TD, Huang CC et al (2004) UCSF Chimera—a visualization system for exploratory research and analysis. J Comput Chem 25:1605–1612.  https://doi.org/10.1002/jcc.20084 CrossRefGoogle Scholar
  14. Philbey AW, Kirkland PD, Ross AD et al (1998) An apparently new virus (family Paramyxoviridae) infectious for pigs, humans, and fruit bats. Emerg Infect Dis 4:269–271.  https://doi.org/10.3201/eid0402.980214 CrossRefGoogle Scholar
  15. Sun D, Luthra P, Xu P, Yoon H, He B (2011) Identification of a phosphorylation site within the P protein important for mRNA transcription and growth of parainfluenza virus 5. J Virol 85:8376–8385.  https://doi.org/10.1128/jvi.00618-11 CrossRefGoogle Scholar
  16. Vranken WF, Boucher W, Stevens TJ et al (2005) The CCPN data model for NMR spectroscopy: development of a software pipeline. Proteins 59:687–696.  https://doi.org/10.1002/prot.20449 CrossRefGoogle Scholar
  17. Wüthrich K (1986) NMR of proteins and nucleic acids. Wiley, New YorkCrossRefGoogle Scholar
  18. Yegambaram K, Bulloch EMM, Kingston RL (2013) Protein domain definition should allow for conditional disorder. Protein Sci 22:1502–1518.  https://doi.org/10.1002/pro.2336 CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.School of Biological SciencesThe University of AucklandAucklandNew Zealand
  2. 2.School of Chemical SciencesThe University of AucklandAucklandNew Zealand

Personalised recommendations