Advertisement

Biomolecular NMR Assignments

, Volume 12, Issue 2, pp 357–361 | Cite as

Resonance assignments for the apo-form of the cellulose-active lytic polysaccharide monooxygenase TaLPMO9A

  • Yoshihito Kitaoku
  • Gaston Courtade
  • Dejan M. Petrović
  • Tamo Fukamizo
  • Vincent G. H. Eijsink
  • Finn L. Aachmann
Article
  • 103 Downloads

Abstract

The apo-form of the 24.4 kDa AA9 family lytic polysaccharide monooxygenase TaLPMO9A from Thermoascus aurantiacus has been isotopically labeled and recombinantly expressed in Pichia pastoris. In this paper, we report the 1H, 13C, and 15N chemical shift assignments, as well as an analysis of the secondary structure of the protein based on the secondary chemical shifts.

Keywords

Lytic polysaccharide monooxygenase LPMO AA9 Cellulose 

Notes

Acknowledgements

This work was financed by SO-funds from NTNU Norwegian University of Science and Technology and by the “Advancing biomass technology—a biomimetic approach” project, the KIFEE project and the Norwegian NMR Platform, all from the Research Council of Norway (Grant Nos. 243663, 249797, 226244, respectively).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Aachmann FL, Eijsink VGH, Vaaje-Kolstad G (2011) 1H, 13C, 15N resonance assignment of the chitin-binding protein CBP21 from Serratia marcescens. Biomol NMR Assign 5:117–119.  https://doi.org/10.1007/s12104-010-9281-2 CrossRefGoogle Scholar
  2. Aachmann FL, Sørlie M, Skjåk-Bræk G et al (2012) NMR structure of a lytic polysaccharide monooxygenase provides insight into copper binding, protein dynamics, and substrate interactions. Proc Natl Acad Sci USA 109:18779–18784.  https://doi.org/10.1073/pnas.1208822109 ADSCrossRefGoogle Scholar
  3. Agger JW, Isaksen T, Várnai A et al (2014) Discovery of LPMO activity on hemicelluloses shows the importance of oxidative processes in plant cell wall degradation. Proc Natl Acad Sci USA 111:6287–6292.  https://doi.org/10.1073/pnas.1323629111 ADSCrossRefGoogle Scholar
  4. Bennati-Granier C, Garajova S, Champion C et al (2015) Substrate specificity and regioselectivity of fungal AA9 lytic polysaccharide monooxygenases secreted by Podospora anserina. Biotechnol Biofuels 8:90.  https://doi.org/10.1186/s13068-015-0274-3 CrossRefGoogle Scholar
  5. Bertini I, Pierattelli R (2004) Copper(II) proteins are amenable for NMR investigations. Pure Appl Chem 76:321–333.  https://doi.org/10.1351/pac200476020321 CrossRefGoogle Scholar
  6. Chylenski P, Petrović DM, Müller G et al (2017) Enzymatic degradation of sulfite-pulped softwoods and the role of LPMOs. Biotechnol Biofuels 10:1–13.  https://doi.org/10.1186/s13068-017-0862-5 CrossRefGoogle Scholar
  7. Courtade G, Balzer S, Forsberg Z et al (2015) 1H, 13C, 15N resonance assignment of the chitin-active lytic polysaccharide monooxygenase BlLPMO10A from Bacillus licheniformis. Biomol NMR Assign 9:207–210.  https://doi.org/10.1007/s12104-014-9575-x CrossRefGoogle Scholar
  8. Courtade G, Wimmer R, Dimarogona M et al (2016a) Backbone and side-chain 1H, 13C, and 15N chemical shift assignments for the apo-form of the lytic polysaccharide monooxygenase NcLPMO9C. Biomol NMR Assign 10:277–280.  https://doi.org/10.1007/s12104-016-9683-x CrossRefGoogle Scholar
  9. Courtade G, Wimmer R, Røhr ÅK et al (2016b) Interactions of a fungal lytic polysaccharide monooxygenase with β-glucan substrates and cellobiose dehydrogenase. Proc Natl Acad Sci USA 113:5922–5927.  https://doi.org/10.1073/pnas.1602566113 ADSCrossRefGoogle Scholar
  10. Courtade G, Forsberg Z, Vaaje-Kolstad G et al (2017) Chemical shift assignments for the apo-form of the catalytic domain, the linker region, and the carbohydrate-binding domain of the cellulose-active lytic polysaccharide monooxygenase ScLPMO10C. Biomol NMR Assign 11:257–264.  https://doi.org/10.1007/s12104-017-9759-2 CrossRefGoogle Scholar
  11. Couturier M, Ladevèze S, Sulzenbacher G et al (2018) Lytic xylan oxidases from wood-decay fungi unlock biomass degradation. Nat Chem Biol 14:306–310.  https://doi.org/10.1038/nchembio.2558 CrossRefGoogle Scholar
  12. Forsberg Z, Vaaje-Kolstad G, Westereng B et al (2011) Cleavage of cellulose by a CBM33 protein. Protein Sci 20:1479–1483.  https://doi.org/10.1002/pro.689 CrossRefGoogle Scholar
  13. Frommhagen M, Sforza S, Westphal AH et al (2015) Discovery of the combined oxidative cleavage of plant xylan and cellulose by a new fungal polysaccharide monooxygenase. Biotechnol Biofuels 8:101.  https://doi.org/10.1186/s13068-015-0284-1 CrossRefGoogle Scholar
  14. Hemsworth GR, Henrissat B, Davies GJ, Walton PH (2014) Discovery and characterization of a new family of lytic polysaccharide monooxygenases. Nat Chem Biol 10:122–126.  https://doi.org/10.1038/nchembio.1417 CrossRefGoogle Scholar
  15. Hu J, Arantes V, Pribowo A (2014) Substrate factors that influence the synergistic interaction of AA9 and cellulases during the enzymatic hydrolysis of biomass. Energy Environ Sci 7:2308–2315.  https://doi.org/10.1039/C4EE00891J CrossRefGoogle Scholar
  16. Isaksen T, Westereng B, Aachmann FL et al (2014) A C4-oxidizing lytic polysaccharide monooxygenase cleaving both cellulose and cello-oligosaccharides. J Biol Chem 289:2632–2642.  https://doi.org/10.1074/jbc.M113.530196 CrossRefGoogle Scholar
  17. Keller R (2004) The computer aided resonance assignment tutorial. CANTINA Verlag, GoldauGoogle Scholar
  18. Levasseur A, Drula E, Lombard V et al (2013) Expansion of the enzymatic repertoire of the CAZy database to integrate auxiliary redox enzymes. Biotechnol Biofuels 6:41–54.  https://doi.org/10.1186/1754-6834-6-41 CrossRefGoogle Scholar
  19. Lo Leggio L, Simmons TJ, Poulsen JN et al (2015) Structure and boosting activity of a starch-degrading lytic polysaccharide monooxygenase. Nat Commun 6:1–9.  https://doi.org/10.1038/ncomms6961 CrossRefGoogle Scholar
  20. Marsh J, Singh VK, Jia Z, Forman-Kay JD (2006) Sensitivity of secondary structure propensities to sequence differences between alpha- and gamma-synuclein: implications for fibrillation. Protein Sci 15:2795–2804.  https://doi.org/10.1110/ps.062465306 CrossRefGoogle Scholar
  21. Meier KK, Jones SM, Kaper T et al (2018) Oxygen activation by Cu LPMOs in recalcitrant carbohydrate polysaccharide conversion to monomer sugars. Chem Rev 118:2593–2635.  https://doi.org/10.1021/acs.chemrev.7b00421 CrossRefGoogle Scholar
  22. Müller G, Várnai A, Johansen KS et al (2015) Harnessing the potential of LPMO-containing cellulase cocktails poses new demands on processing conditions. Biotechnol Biofuels 8:187.  https://doi.org/10.1186/s13068-015-0376-y CrossRefGoogle Scholar
  23. Pickford AR, O’Leary JM (2004) Isotopic labeling of recombinant proteins from the methylotrophic yeast Pichia pastoris. Methods Mol Biol 278:17–33.  https://doi.org/10.1385/1-59259-809-9:017 Google Scholar
  24. Quinlan RJ, Sweeney MD, Lo Leggio L et al (2011) Insights into the oxidative degradation of cellulose by a copper metalloenzyme that exploits biomass components. Proc Natl Acad Sci USA 108:15079–15084.  https://doi.org/10.1073/pnas.1105776108 ADSCrossRefGoogle Scholar
  25. Sabbadin F, Hemsworth GR, Ciano L et al (2018) An ancient family of lytic polysaccharide monooxygenases with roles in arthropod development and biomass digestion. Nat Commun 9:756.  https://doi.org/10.1038/s41467-018-03142-x ADSCrossRefGoogle Scholar
  26. Shen Y, Bax A (2013) Protein backbone and sidechain torsion angles predicted from NMR chemical shifts using artificial neural networks. J Biomol NMR 56:227–241.  https://doi.org/10.1007/s10858-013-9741-y CrossRefGoogle Scholar
  27. Vaaje-Kolstad G, Westereng B, Horn SJ et al (2010) An oxidative enzyme boosting the enzymatic conversion of recalcitrant polysaccharides. Science 330:219–222.  https://doi.org/10.1126/science.1192231 ADSCrossRefGoogle Scholar
  28. Vaaje-Kolstad G, Forsberg Z, Loose JS et al (2017) Structural diversity of lytic polysaccharide monooxygenases. Curr Opin Struct Biol 44:67–76.  https://doi.org/10.1016/j.sbi.2016.12.012 CrossRefGoogle Scholar
  29. Várnai A, Tang C, Bengtsson O et al (2014) Expression of endoglucanases in Pichia pastoris under control of the GAP promoter. Microb Cell Fact 13:1–10.  https://doi.org/10.1186/1475-2859-13-57 CrossRefGoogle Scholar
  30. Vu VV, Beeson WT, Phillips CM et al (2014a) Determinants of regioselective hydroxylation in the fungal polysaccharide monooxygenases. J Am Chem Soc 2:562–565.  https://doi.org/10.1021/ja409384b CrossRefGoogle Scholar
  31. Vu VV, Beeson WT, Span EA et al (2014b) A family of starch-active polysaccharide monooxygenases. Proc Natl Acad Sci USA 111:13822–13827.  https://doi.org/10.1073/pnas.1408090111 ADSCrossRefGoogle Scholar
  32. Zhang H, Neal S, Wishart DS (2003) RefDB: a database of uniformly referenced protein chemical shifts. J Biomol NMR 25:173–195.  https://doi.org/10.1023/A:1022836027055 CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  • Yoshihito Kitaoku
    • 3
  • Gaston Courtade
    • 1
  • Dejan M. Petrović
    • 2
  • Tamo Fukamizo
    • 3
  • Vincent G. H. Eijsink
    • 2
  • Finn L. Aachmann
    • 1
  1. 1.NOBIPOL, Department of Biotechnology and Food ScienceNTNU Norwegian University of Science and TechnologyTrondheimNorway
  2. 2.Faculty of Chemistry, Biotechnology and Food ScienceNorwegian University of Life SciencesÅsNorway
  3. 3.Biochemistry-Electrochemistry Research Unit, Institute of ScienceSuranaree University of TechnologyNakhon RatchasimaThailand

Personalised recommendations