Advertisement

Biomolecular NMR Assignments

, Volume 12, Issue 2, pp 329–334 | Cite as

NMR resonance assignments for the SAM/SAH-binding riboswitch RNA bound to S-adenosylhomocysteine

  • A. Katharina Weickhmann
  • Heiko Keller
  • Elke Duchardt-Ferner
  • Elisabeth Strebitzer
  • Michael A. Juen
  • Johannes Kremser
  • Jan Philip Wurm
  • Christoph Kreutz
  • Jens WöhnertEmail author
Article

Abstract

Riboswitches are structured RNA elements in the 5′-untranslated regions of bacterial mRNAs that are able to control the transcription or translation of these mRNAs in response to the specific binding of small molecules such as certain metabolites. Riboswitches that bind with high specificity to either S-adenosylmethionine (SAM) or S-adenosylhomocysteine (SAH) are widespread in bacteria. Based on differences in secondary structure and sequence these riboswitches can be grouped into a number of distinct classes. X-ray structures for riboswitch RNAs in complex with SAM or SAH established a structural basis for understanding ligand recognition and discrimination in many of these riboswitch classes. One class of riboswitches—the so-called SAM/SAH riboswitch class—binds SAM and SAH with similar affinity. However, this class of riboswitches is structurally not yet characterized and the structural basis for its unusual bispecificity is not established. In order to understand the ligand recognition mode that enables this riboswitch to bind both SAM and SAH with similar affinities, we are currently determining its structure in complex with SAH using NMR spectroscopy. Here, we present the NMR resonance assignment of the SAM/SAH binding riboswitch (env9b) in complex with SAH as a prerequisite for a solution NMR-based high-resolution structure determination.

Keywords

RNA Riboswitch SAH SAM NMR assignment Triple resonance experiments 

Notes

Acknowledgements

We are grateful to Christian Richter and Manfred Strupf for maintenance of the NMR facility and to Kerstin Yacoub for help with sample preparation. This work was supported by the Center for Biomolecular Magnetic Resonance (BMRZ) of the Goethe University Frankfurt and the Deutsche Forschungsgemeinschaft (DFG) through the CRC (SFB) 902 “Molecular principles of RNA-based regulation”, Project B10.

References

  1. Chatterjee D, Kudlinzki D, Linhard V, Saxena K, Schieborr U, Gande SL, Wurm JP, Wöhnert J, Abele R, Rogov VV, Dötsch V, Osiewacz HD, Sreeramulu S, Schwalbe H (2015) Structure and biophysical characterization of the S-adenosylmethionine-dependent O-methyltransferase PaMTH1, a putative enzyme accumulating during senescence of Podospora anserina. J Biol Chem 290:16415–16430CrossRefGoogle Scholar
  2. Dingley AJ, Grzesiek S (1998) Direct observation of hydrogen bonds in nucleic acid base pairs by internucleotide 2JNN couplings. J Am Chem Soc 120:8293–8297CrossRefGoogle Scholar
  3. Duchardt-Ferner E, Weigand JE, Ohlenschläger O, Schmidtke SR, Suess B, Wöhnert J (2010) Highly modular structure and ligand binding by conformational capture in a minimalistic riboswitch. Angew Chem Int Ed Engl 49:6216–6219CrossRefGoogle Scholar
  4. Ferré-D’Amaré AR, Doudna JA (1996) Use of cis- and trans-ribozymes to remove 5′ and 3′ heterogeneities from milligrams of in vitro transcribed RNA. Nucleic Acids Res 24:977–978CrossRefGoogle Scholar
  5. Grundy FJ, Henkin TM (2006) From ribosome to riboswitch: control of gene expression in bacteria by RNA structural rearrangements. Crit Rev Biochem Mol Biol 41:329–338CrossRefGoogle Scholar
  6. Juen MA, Wunderlich CH, Nußbaumer F, Tollinger M, Kontaxis G, Konrat R, Hansen DF, Kreutz C (2016) Excited states of nucleic acids probed by proton relaxation dispersion NMR spectroscopy. Angew Chem Int Ed Engl 55:12008–12012CrossRefGoogle Scholar
  7. Keller R (2004) The computer aided resonance tutorial. CANTINA Verlag, GoldauGoogle Scholar
  8. Milligan JF, Uhlenbeck OC (1989) Synthesis of small RNAs using T7 RNA polymerase. Meth Enzymol 180:51–62CrossRefGoogle Scholar
  9. Nikonowicz EP, Pardi A (1992) Three-dimensional heteronuclear NMR studies of RNA. Nature 355:184–186ADSCrossRefGoogle Scholar
  10. Ohlenschläger O, Wöhnert J, Bucci E, Seitz S, Häfner S, Ramachandran R, Zell R, Görlach M (2004) The structure of the stemloop D subdomain of coxsackievirus B3 cloverleaf RNA and its interaction with the proteinase 3C. Structure 12:237–248CrossRefGoogle Scholar
  11. Ottink OM, Nelissen FHT, Derks Y, Wijmenga SS, Heus HA (2010) Enzymatic stereospecific preparation of fluorescent S-adenosyl-l-methionine analogs. Anal Biochem 396:280–283CrossRefGoogle Scholar
  12. Phan AT (2000) Long-range imino proton-13C J-couplings and the through-bond correlation of imino and non-exchangeable protons in unlabeled DNA. J Biomol NMR 16:175–178CrossRefGoogle Scholar
  13. Piotto M, Saudek V, Sklenár V (1992) Gradient-tailored excitation for single-quantum NMR spectroscopy of aqueous solutions. J Biomol NMR 2:661–665CrossRefGoogle Scholar
  14. Roth A, Breaker RR (2009) The structural and functional diversity of metabolite-binding riboswitches. Annu Rev Biochem 78:305–334CrossRefGoogle Scholar
  15. Simon B, Zanier K, Sattler M (2001) A TROSY relayed HCCH-COSY experiment for correlating adenine H2/H8 resonances in uniformly 13C-labeled RNA molecules. J Biomol NMR 20:173–176CrossRefGoogle Scholar
  16. Sklenár V, Peterson RD, Rejante MR, Feigon J (1993) Two- and three-dimensional HCN experiments for correlating base and sugar resonances in 15N,13C-labeled RNA oligonucleotides. J Biomol NMR 3:721–727CrossRefGoogle Scholar
  17. Sklenár V, Peterson RD, Rejante MR, Feigon J (1994) Correlation of nucleotide base and sugar protons in a 15N-labeled HIV-1 RNA oligonucleotide by 1H-15N HSQC experiments. J Biomol NMR 4:117–122Google Scholar
  18. Wang JX, Breaker RR (2008) Riboswitches that sense S-adenosylmethionine and S-adenosylhomocysteine. Biochem Cell Biol 86:157–168CrossRefGoogle Scholar
  19. Wang JX, Lee ER, Morales DR, Lim J, Breaker RR (2008) Riboswitches that sense S-adenosylhomocysteine and activate genes involved in coenzyme recycling. Mol Cell 29:691–702CrossRefGoogle Scholar
  20. Weinberg Z, Wang JX, Bogue J, Yang J, Corbino K, Moy RH, Breaker RR (2010) Comparative genomics reveals 104 candidate structured RNAs from bacteria, archaea, and their metagenomes. Genome Biol 11:R31CrossRefGoogle Scholar
  21. Wöhnert J, Dingley AJ, Stoldt M, Gorlach M, Grzesiek S, Brown LR (1999a) Direct identification of NH… N hydrogen bonds in non-canonical base pairs of RNA by NMR spectroscopy. Nucleic Acids Res 27:3104–3110CrossRefGoogle Scholar
  22. Wöhnert J, Ramachandran R, Görlach M, Brown LR (1999b) Triple-resonance experiments for correlation of H5 and exchangeable pyrimidine base hydrogens in (13)C,(15)N-labeled RNA. J Magn Reson 139:430–433ADSCrossRefGoogle Scholar
  23. Wunderlich CH, Spitzer R, Santner T, Fauster K, Tollinger M, Kreutz C (2012) Synthesis of (6-(13)C)pyrimidine nucleotides as spin-labels for RNA dynamics. J Am Chem Soc 134:7558–7569CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  • A. Katharina Weickhmann
    • 1
  • Heiko Keller
    • 1
  • Elke Duchardt-Ferner
    • 1
  • Elisabeth Strebitzer
    • 2
  • Michael A. Juen
    • 2
  • Johannes Kremser
    • 2
  • Jan Philip Wurm
    • 1
    • 3
  • Christoph Kreutz
    • 2
  • Jens Wöhnert
    • 1
    Email author
  1. 1.Institute for Molecular Biosciences and Center for Biomolecular Magnetic Resonance (BMRZ)Goethe-University FrankfurtFrankfurtGermany
  2. 2.Institute of Organic Chemistry, Centre for Molecular Biosciences (CMBI)University of InnsbruckInnsbruckAustria
  3. 3.Institute of Biophysics and Physical BiochemistryUniversity of RegensburgRegensburgGermany

Personalised recommendations