NMR assignment and solution structure of the external DII domain of the yeast Rvb2 protein

  • Benoit Bragantini
  • Clément Rouillon
  • Bruno Charpentier
  • Xavier Manival
  • Marc Quinternet
Article

Abstract

We report the nearly complete 1H, 15N and 13C resonance assignment and the solution structure of the external DII domain of the yeast Rvb2 protein, a member of the AAA+ATPase superfamily.

Keywords

R2TP Chaperone snoRNP biogenesis AAA+ ATPase Rvb RUVBL 

Notes

Acknowledgements

We thank the platform of biophysics and structural biology of UMS 2008 IBSLor (CNRS-INSERM-UL) for NMR facilities. This work was supported by the Centre National de la Recherche Scientifique (CNRS), the pôle Biologie, Médecine, Santé (BMS) of the University of Lorraine (UL) and the Agence Nationale de la Recherche [ANR-11-BSV8-01503; ANR-16-CE11-0032-02].

Supplementary material

12104_2018_9816_MOESM1_ESM.docx (17 kb)
Supplementary material 1 (DOCX 16 KB)

References

  1. Dolinsky TJ, Nielsen JE, McCammon JA, Baker NA (2004) PDB2PQR: an automated pipeline for the setup of Poisson–Boltzmann electrostatics calculations. Nucleic Acids Res 32:W665–W667.  https://doi.org/10.1093/nar/gkh381 CrossRefGoogle Scholar
  2. Ewens CA, Su M, Zhao L, Nano N, Houry WA, Southworth DR (2016) Architecture and nucleotide-dependent conformational changes of the Rvb1-Rvb2 AAA+ complex revealed by cryoelectron microscopy. Structure 24:657–666.  https://doi.org/10.1016/j.str.2016.03.018 CrossRefGoogle Scholar
  3. Guntert P (2004) Automated NMR structure calculation with CYANA. Methods Mol Biol 278:353–378.  https://doi.org/10.1385/1-59259-809-9:353 Google Scholar
  4. Jha S, Dutta A (2009) RVB1/RVB2: running rings around molecular biology. Mol Cell 34:521–533.  https://doi.org/10.1016/j.molcel.2009.05.016 CrossRefGoogle Scholar
  5. Keller RLJ (2004) Computer-aided resonance assignment tutorial, 1st edn. CANTINA, ZürichGoogle Scholar
  6. Lakomek K, Stoehr G, Tosi A, Schmailzl M, Hopfner KP (2015) Structural basis for dodecameric assembly states and conformational plasticity of the full-length AAA+ATPases Rvb1. Rvb2. Structure 23:483–495.  https://doi.org/10.1016/j.str.2014.12.015 CrossRefGoogle Scholar
  7. Lescop E, Schanda P, Brutscher B (2007) A set of BEST triple-resonance experiments for time-optimized protein resonance assignment. J Magn Reson 187:163–169.  https://doi.org/10.1016/j.jmr.2007.04.002 ADSCrossRefGoogle Scholar
  8. Mao YQ, Houry WA (2017) The role of pontin and reptin in cellular physiology and cancer etiology. Front Mol Biosci 4:58.  https://doi.org/10.3389/fmolb.2017.00058 CrossRefGoogle Scholar
  9. Nederveen AJ et al (2005) RECOORD: a recalculated coordinate database of 500 + proteins from the PDB using restraints from the BioMagResBank. Proteins 59:662–672.  https://doi.org/10.1002/prot.20408 CrossRefGoogle Scholar
  10. Nguyen VQ, Ranjan A, Stengel F, Wei D, Aebersold R, Wu C, Leschziner AE (2013) Molecular architecture of the ATP-dependent chromatin-remodeling complex SWR1. Cell 154:1220–1231.  https://doi.org/10.1016/j.cell.2013.08.018 CrossRefGoogle Scholar
  11. Rivera-Calzada A et al (2017) The structure of the R2TP complex defines a platform for recruiting diverse client proteins to the HSP90 molecular chaperone system. Structure 25:1145–1152.  https://doi.org/10.1016/j.str.2017.05.016 CrossRefGoogle Scholar
  12. Shen Y, Bax A (2013) Protein backbone and sidechain torsion angles predicted from NMR chemical shifts using artificial neural networks. J Biomol NMR 56:227–241.  https://doi.org/10.1007/s10858-013-9741-y CrossRefGoogle Scholar
  13. Sievers F et al (2011) Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol Syst Biol 7:539.  https://doi.org/10.1038/msb.2011.75 CrossRefGoogle Scholar
  14. Silva-Martin N et al (2016) The combination of X-ray crystallography and cryo-electron microscopy provides insight into the overall architecture of the dodecameric Rvb1/Rvb2 complex. PLoS ONE 11:e0146457.  https://doi.org/10.1371/journal.pone.0146457 CrossRefGoogle Scholar
  15. Tian S et al (2017) Pih1p-Tah1p puts a lid on hexameric AAA+ATPases Rvb1/2p. Structure 25:1519–1529.  https://doi.org/10.1016/j.str.2017.08.002 CrossRefGoogle Scholar
  16. Tosi A et al (2013) Structure and subunit topology of the INO80 chromatin remodeler and its nucleosome complex. Cell 154:1207–1219.  https://doi.org/10.1016/j.cell.2013.08.016 CrossRefGoogle Scholar
  17. Walker JE, Saraste M, Runswick MJ, Gay NJ (1982) Distantly related sequences in the alpha- and beta-subunits of ATP synthase, myosin, kinases and other ATP-requiring enzymes and a common nucleotide binding fold. EMBO J 1:945–951Google Scholar
  18. Zhou CY et al (2017) Regulation of Rvb1/Rvb2 by a domain within the INO80 chromatin remodeling complex implicates the yeast Rvbs as protein assembly chaperones. Cell Rep 19:2033–2044.  https://doi.org/10.1016/j.celrep.2017.05.029 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • Benoit Bragantini
    • 1
  • Clément Rouillon
    • 1
  • Bruno Charpentier
    • 1
  • Xavier Manival
    • 1
  • Marc Quinternet
    • 2
  1. 1.Ingénierie Moléculaire et Physiopathologie Articulaire (IMoPA)UMR 7365 CNRS Université de Lorraine, BiopôleVandœuvre-lès-NancyFrance
  2. 2.Ingénierie-Biologie-Santé Lorraine (IBSLor)UMS 2008, CNRS, INSERM, Université de Lorraine, BiopôleVandœuvre-lès-NancyFrance

Personalised recommendations