Advertisement

Biomolecular NMR Assignments

, Volume 12, Issue 1, pp 117–122 | Cite as

Chemical shift assignments of the partially deuterated Fyn SH2–SH3 domain

  • Fabien Kieken
  • Karine Loth
  • Nico van Nuland
  • Peter Tompa
  • Tom Lenaerts
Article
  • 124 Downloads

Abstract

Src Homology 2 and 3 (SH2 and SH3) are two key protein interaction modules involved in regulating the activity of many proteins such as tyrosine kinases and phosphatases by respective recognition of phosphotyrosine and proline-rich regions. In the Src family kinases, the inactive state of the protein is the direct result of the interaction of the SH2 and the SH3 domain with intra-molecular regions, leading to a closed structure incompetent with substrate modification. Here, we report the 1H, 15N and 13C backbone- and side-chain chemical shift assignments of the partially deuterated Fyn SH3–SH2 domain and structural differences between tandem and single domains. The BMRB accession number is 27165.

Keywords

SH3–SH2 Tandem domains NMR Fyn kinase Src family 

Notes

Acknowledgements

This research is funded by the Flemish Scientific Fund (F.W.O.) via the grant G025915N. The VIB and the Jean Jeener NMR Center provided further support for our work.

References

  1. Boggon TJ, Eck MJ (2004) Structure and regulation of Src family kinases. Oncogene 23:7918–7927CrossRefGoogle Scholar
  2. Cheung MS, Maguire ML, Stevens TJ, Broadhurst RW (2010) DANGLE: A Bayesian inferential method for predicting protein backbone dihedral angles and secondary structure. J Magn Reson 202:223ADSCrossRefGoogle Scholar
  3. Delaglio F, Grzesiek S, Vuister GW, Zhu G, Pfeifer J, Bax A (1995) NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J Biomol NMR 6:277–293CrossRefGoogle Scholar
  4. Elias D, Ditzel HJ (2015) Fyn is an important molecule in cancer pathogenesis and drug resistance. Pharmacol Res 100:250–254CrossRefGoogle Scholar
  5. Elias D, Vever H, Laenkholm AV, Gjerstorff MF, Yde CW, Lykkesfeldt AE, Ditzel HJ (2015) Gene expression profiling identifies FYN as an important molecule in tamoxifen resistance and a predictor of early recurrence in patients treated with endocrine therapy. Oncogene 34:1919–1927CrossRefGoogle Scholar
  6. Grant SK (2009) Therapeutic protein kinase inhibitors. Cell Mol Life Sci 66:1163–1177CrossRefGoogle Scholar
  7. Grant SG, O’Dell TJ, Karl KA, Stein PL, Soriano P, Kandel ER (1992) Impaired long-term potentiation, spatial learning, and hippocampal development in fyn mutant mice. Science 258:1903–1910ADSCrossRefGoogle Scholar
  8. Huculeci R et al (2016) Dynamically coupled residues within the SH2 domain of Fyn are key to unlocking its activity. Structure 24:1947–1959CrossRefGoogle Scholar
  9. Johnson BA, Blevins RA (1994) NMR view: a computer program for the visualization and analysis of NMR data. J Biomol NMR 4:603–614CrossRefGoogle Scholar
  10. Kay LE, Torchia DA, Bax A (1989) Backbone dynamics of proteins as studied by 15N inverse detected heteronuclear NMR spectroscopy: application to staphylococcal nuclease. Biochemistry 28:8972–8979CrossRefGoogle Scholar
  11. Kojima N, Ishibashi H, Obata K, Kandel ER (1998) Higher seizure susceptibility and enhanced tyrosine phosphorylation of N-methyl-D-aspartate receptor subunit 2B in fyn transgenic mice. Learn Mem 5:429–445Google Scholar
  12. Li X et al (2003) Alphavbeta6-Fyn signaling promotes oral cancer progression. J Biol Chem 278:41646–41653CrossRefGoogle Scholar
  13. Manning G, Whyte DB, Martinez R, Hunter T, Sudarsanam S (2002) The protein kinase complement of the human genome. Science 298:1912–1934ADSCrossRefGoogle Scholar
  14. Nakazawa T et al (2001) Characterization of Fyn-mediated tyrosine phosphorylation sites on GluR epsilon 2 (NR2B) subunit of the N-methyl-D-aspartate receptor. J Biol Chem 276:693–699CrossRefGoogle Scholar
  15. Nietlispach D et al (1996) An approach to the structure determination of larger proteins using triple resonance nmr experiments in conjunction with random fractional deuteration. J Am Chem Soc 118:407–415CrossRefGoogle Scholar
  16. Nygaard HB, van Dyck CH, Strittmatter SM (2014) Fyn kinase inhibition as a novel therapy for Alzheimer’s disease. Alzheimers Res Ther 6:8CrossRefGoogle Scholar
  17. Ohnuma T, Kato H, Arai H, McKenna PJ, Emson PC (2003) Expression of Fyn, a non-receptor tyrosine kinase in prefrontal cortex from patients with schizophrenia and its correlation with clinical onset. Brain Res Mol Brain Res 112:90–94CrossRefGoogle Scholar
  18. Panchamoorthy G et al (1994) Physical and functional interactions between SH2 and SH3 domains of the Src family protein tyrosine kinase p59fyn. Mol Cell Biol 14:6372–6385CrossRefGoogle Scholar
  19. Panicker N et al (2015) Fyn kinase regulates microglial neuroinflammatory responses in cell culture and animal models of parkinson’s disease. J Neurosci 35:10058–10077CrossRefGoogle Scholar
  20. Pawson T (1995) Protein modules and signalling networks. Nature 373:573–580ADSCrossRefGoogle Scholar
  21. Prybylowski K, Chang K, Sans N, Kan L, Vicini S, Wenthold RJ (2005) The synaptic localization of NR2B-containing NMDA receptors is controlled by interactions with PDZ proteins and AP-2. Neuron 47:845–857CrossRefGoogle Scholar
  22. Roskoski R Jr (2015) Src protein-tyrosine kinase structure, mechanism, and small molecule inhibitors. Pharmacol Res 94:9–25CrossRefGoogle Scholar
  23. Rossi P et al (2010) A microscale protein NMR sample screening pipeline. J Biomol NMR 46:11–22CrossRefGoogle Scholar
  24. Saito YD, Jensen AR, Salgia R, Posadas EM (2010) Fyn: a novel molecular target in cancer. Cancer 116:1629–1637CrossRefGoogle Scholar
  25. Saksela K, Permi P (2012) SH3 domain ligand binding: What’s the consensus and where’s the specificity? FEBS Lett 586:2609–2614CrossRefGoogle Scholar
  26. Sato I et al (2009) Differential trafficking of Src, Lyn, Yes and Fyn is specified by the state of palmitoylation in the SH4 domain. J Cell Sci 122:965–975CrossRefGoogle Scholar
  27. Sicheri F, Kuriyan J (1997) Structures of Src-family tyrosine kinases. Curr Opin Struct Biol 7:777–785CrossRefGoogle Scholar
  28. Suzuki T, Okumura-Noji K (1995) NMDA receptor subunits epsilon 1 (NR2A) and epsilon 2 (NR2B) are substrates for Fyn in the postsynaptic density fraction isolated from the rat brain. Biochem Biophys Res Commun 216:582–588CrossRefGoogle Scholar
  29. Ulmer TS, Werner JM, Campbell ID (2002) SH3-SH2 domain orientation in Src kinases: NMR studies of Fyn. Structure 10:901–911CrossRefGoogle Scholar
  30. Vranken WF et al (2005) The CCPN data model for NMR spectroscopy: development of a software pipeline. Proteins 59:687–696CrossRefGoogle Scholar
  31. Xu W, Doshi A, Lei M, Eck MJ, Harrison SC (1999) Crystal structures of c-Src reveal features of its autoinhibitory mechanism. Mol Cell 3:629–638CrossRefGoogle Scholar
  32. Young MA, Gonfloni S, Superti-Furga G, Roux B, Kuriyan J (2001) Dynamic coupling between the SH2 and SH3 domains of c-Src and Hck underlies their inactivation by C-terminal tyrosine phosphorylation. Cell 105:115–126CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2017

Authors and Affiliations

  1. 1.Structural Biology BrusselsVrije Universiteit BrusselBrusselBelgium
  2. 2.Center for Structural Biology, VIBBrusselBelgium
  3. 3.AI-lab, Vakgroep ComputerwetenschappenVrije Universiteit BrusselBrusselsBelgium
  4. 4.Interuniversity Institute of Bioinformatics in Brussels (IB2)ULB-VUBBrusselsBelgium
  5. 5.Centre de Biophysique Moléculaire, Centre National de la Recherche Scientifique (CNRS) UPR 4301Université d’OrléansOrléans Cedex 2France
  6. 6.Collegium Sciences et TechniquesUniversité d’OrléansOrléansFrance
  7. 7.MLG, Départment d’InformatiqueUniversité Libre de BruxellesBrusselsBelgium

Personalised recommendations