Biomolecular NMR Assignments

, Volume 12, Issue 1, pp 15–22 | Cite as

Backbone 1H, 13C and 15N chemical shift assignment of full-length human uracil DNA glycosylase UNG2

  • Edith Buchinger
  • Siv Å. Wiik
  • Anna Kusnierczyk
  • Renana Rabe
  • Per. A. Aas
  • Bodil Kavli
  • Geir Slupphaug
  • Finn L. AachmannEmail author


Human uracil N-glycosylase isoform 2—UNG2 consists of an N-terminal intrinsically disordered regulatory domain (UNG2 residues 1–92, 9.3 kDa) and a C-terminal structured catalytic domain (UNG2 residues 93–313, 25.1 kDa). Here, we report the backbone 1H, 13C, and 15N chemical shift assignment as well as secondary structure analysis of the N-and C-terminal domains of UNG2 representing the full-length UNG2 protein.


Uracil-DNA glycosylase Uracil N-glycosylase isoform 2 UNG2 DNA repair Intrinsically disordered domain 



Sequence- and ligation independent cloning


Uracil N-glycosylase isoform 2


Residues 1–92 of UNG2


Amino acid


Proliferating cell nuclear antigen


Replication protein A


Chitin binding domain


Residues 93–313 of UNG2-G93C



This work was financed by the MARPOL project, the Norwegian NMR Platform and a FRINAT project, all from the Research Council of Norway (Grant Numbers 221576, 226244, and 221538, respectively).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Assefa NG, Niiranen L, Willassen NP, Smalås A, Moe E (2012) Thermal unfolding studies of cold adapted uracil-DNA N-glycosylase (UNG) from Atlantic cod (Gadus morhua). A comparative study with human UNG comparative biochemistry and physiology part. Biochem Mol Biol 161:60–68. doi: 10.1016/j.cbpb.2011.09.007 CrossRefGoogle Scholar
  2. Blatny JM, Brautaset T, WintherLarsen HC, Karunakaran P, Valla S (1997) Improved broad-host-range RK2 vectors useful for high and low regulated gene expression levels in gram-negative bacteria. Plasmid 38:35–51CrossRefGoogle Scholar
  3. Hagen L et al (2008) Cell cycle-specific UNG2 phosphorylations regulate protein turnover, activity and association with RPA. EMBO J 27:51–61. doi: 10.1038/sj.emboj.7601958 CrossRefGoogle Scholar
  4. Kavli B et al (2002) hUNG2 Is the Major repair enzyme for removal of uracil from U:A matches, U:G mismatches, and U in single-stranded DNA, with hSMUG1 as a broad specificity backup. J Biol Chem 277:39926–39936. doi: 10.1074/jbc.M207107200 CrossRefGoogle Scholar
  5. Keller R (2004) Optimizing the process of nuclear magnetic resonance spectrum analysis and computer aided resonance. Assignment CANTINA Verlag, ZürichGoogle Scholar
  6. Li MZ, Elledge SJ (2012) SLIC: a method for sequence- and ligation-independent cloning. In: Peccoud J (ed) Gene synthesis: methods and protocols. Humana Press, Totowa, pp 51–59. doi: 10.1007/978-1-61779-564-0_5 CrossRefGoogle Scholar
  7. Marsh JA, Singh VK, Jia Z, Forman-Kay JD (2006) Sensitivity of secondary structure propensities to sequence differences between α- and γ-synuclein. Implic Fibril Protein Sci 15:2795–2804. doi: 10.1110/ps.062465306 CrossRefGoogle Scholar
  8. Mer G et al (2000) Structural basis for the recognition of DNA repair proteins UNG2, XPA, and RAD52 by replication factor RPA. Cell 103:449–456. doi: 10.1016/S0092-8674(00)00136-7 CrossRefGoogle Scholar
  9. Mol CD, Arvai AS, Slupphaug G, Kavli B, Alseth I, Krokan HE, Tainer JA (1995) Crystal structure and mutational analysis of human uracil-DNA glycosylase: structural basis for specificity and catalysis. Cell 80:869–878CrossRefGoogle Scholar
  10. Otterlei M et al. (1999) Post-replicative base excision repair in replication foci. EMBO J. doi: 10.1093/emboj/18.13.3834 Google Scholar
  11. Shen Y, Delaglio F, Cornilescu G, Bax A (2009) TALOS+: a hybrid method for predicting protein backbone torsion angles from NMR chemical shifts. J Biomol NMR 44:213–223. doi: 10.1007/s10858-009-9333-z CrossRefGoogle Scholar
  12. Sletta H et al (2007) The presence of N-terminal secretion signal sequences leads to strong stimulation of the total expression levels of three tested medically important proteins during high-cell-density cultivations of Escherichia coli. Appl Environ Microbiol 73:906–912. doi: 10.1128/AEM.01804-06 CrossRefGoogle Scholar
  13. Slupphaug G, Mol CD, Kavli B, Arvai AS, Krokan HE, Tainer JA (1996) A nucleotide-flipping mechanism from the structure of human uracil-DNA glycosylase bound to DNA. Nature 384:87–92. doi: 10.1038/384087a0 ADSCrossRefGoogle Scholar
  14. Studier FW (2005) Protein production by auto-induction in high density shaking cultures. Protein Expr Purif 41:207–234CrossRefGoogle Scholar
  15. Zhang H, Neal S, Wishart DS (2003) RefDB: a database of uniformly referenced protein chemical shifts. J Biomol NMR 25:173–195CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  1. 1.NOBIPOL, Department of BiotechnologyNTNU-Norwegian University of Science and TechnologyTrondheimNorway
  2. 2.Department of Cancer Research and Molecular MedicineNTNU - Norwegian University of Science and TechnologyTrondheimNorway
  3. 3.Department of Nutrition, Institute of Basic Medical SciencesUniversity of OsloOsloNorway

Personalised recommendations