Biomolecular NMR Assignments

, Volume 11, Issue 2, pp 257–264 | Cite as

Chemical shift assignments for the apo-form of the catalytic domain, the linker region, and the carbohydrate-binding domain of the cellulose-active lytic polysaccharide monooxygenase ScLPMO10C

  • Gaston Courtade
  • Zarah Forsberg
  • Gustav Vaaje-Kolstad
  • Vincent G. H. Eijsink
  • Finn L. Aachmann
Article

Abstract

The apo-form of the 21.4 kDa catalytic domain and the 10.7 kDa carbohydrate binding domain of the AA10 family lytic polysaccharide monooxygenase ScLPMO10C from Streptomyces coelicolor have been isotopically labeled and recombinantly expressed in Escherichia coli. In this paper, we report the 1H, 13C, and 15N chemical shift assignments of each individual domain as well as an ensemble of the assignment for the full-length protein, including its approximately 30-amino acid long linker.

Keywords

Lytic polysaccharide monooxygenase LPMO AA10 Cellulose Linker CBM2 

References

  1. Aslanidis C, de Jong PJ (1990) Ligation-independent cloning of PCR products (LIC-PCR). Nucleic Acids Res 18:6069–6074. doi:10.1093/nar/18.20.6069 CrossRefGoogle Scholar
  2. Beeson WT, Vu VV, Span EA et al (2015) Cellulose degradation by polysaccharide monooxygenases. Annu Rev Biochem 84:923–946. doi:10.1146/annurev-biochem-060614-034439 CrossRefGoogle Scholar
  3. Boraston AB, Bolam DN, Gilbert HJ, Davies GJ (2004) Carbohydrate-binding modules: fine-tuning polysaccharide recognition. Biochem J 382:769–781. doi:10.1042/BJ20040892 CrossRefGoogle Scholar
  4. Courtade G, Le SB, Sætrom GI et al (2017) A novel expression system for lytic polysaccharide monooxygenases. Carbohydr Res. doi:10.1016/j.carres.2017.02.003 Google Scholar
  5. Crouch LI, Labourel A, Walton PH et al (2016) The contribution of non-catalytic carbohydrate binding modules to the activity lytic polysaccharide monooxygenases. J Biol Chem 291:7439–7449. doi:10.1074/jbc.M115.702365 CrossRefGoogle Scholar
  6. Forsberg Z, Vaaje-Kolstad G, Westereng B et al (2011) Cleavage of cellulose by a CBM33 protein. Protein Sci 20:1479–1483. doi:10.1002/pro.689 CrossRefGoogle Scholar
  7. Forsberg Z, Mackenzie AK, Sørlie M et al (2014a) Structural and functional characterization of a conserved pair of bacterial cellulose-oxidizing lytic polysaccharide monooxygenases. Proc Natl Acad Sci USA 111:8446–8451. doi:10.1073/pnas.1402771111 ADSCrossRefGoogle Scholar
  8. Forsberg Z, Røhr AK, Mekasha S et al (2014b) Comparative study of two chitin-active and two cellulose-active AA10-type lytic polysaccharide monooxygenases. Biochemistry 53:1647–1656. doi:10.1021/bi5000433
  9. Forsberg Z, Nelson CE, Dalhus B et al (2016) Structural and functional analysis of a lytic polysaccharide monooxygenase important for efficient utilization of chitin in Cellvibrio japonicus. J Biol Chem 291:7300–7312. doi:10.1074/jbc.M115.700161 CrossRefGoogle Scholar
  10. Gasteiger E, Hoogland C, Gattiker A et al (2005) Protein identification and analysis tools on the ExPASy server. In: Walker JM (ed) The proteomics protocols handook. Springer, New York, pp 571–607CrossRefGoogle Scholar
  11. George RA, Heringa J (2002) An analysis of protein domain linkers: their classification and role in protein folding. Protein Eng 15:871–879. doi:10.1093/PROTEIN/15.11.871 CrossRefGoogle Scholar
  12. Hemsworth GR, Henrissat B, Davies GJ, Walton PH (2014) Discovery and characterization of a new family of lytic polysaccharide monooxygenases. Nat Chem Biol 10:122–126. doi:10.1038/nchembio.1417 CrossRefGoogle Scholar
  13. Jeong JY, Yim HS, Ryu JY et al (2012) One-step sequence-and ligation-independent cloning as a rapid and versatile cloning method for functional genomics studies. Appl Environ Microbiol 78:5440–5443. doi:10.1128/AEM.00844-12 CrossRefGoogle Scholar
  14. Jervis EJ, Haynes CA, Kilburn G et al (1997) Surface diffusion of cellulases and their isolated binding domains on cellulose surface. J Biol Chem 272:24016–24023. doi:10.1074/jbc.272.38.24016 CrossRefGoogle Scholar
  15. Johansen KS (2016) Lytic polysaccharide monooxygenases: the microbial power tool for lignocellulose degradation. Trends Plant Sci 21:926–936. doi:10.1016/j.tplants.2016.07.012 CrossRefGoogle Scholar
  16. Kazimierczuk K, Orekhov VY (2011) Accelerated NMR spectroscopy by using compressed sensing. Angew Chem Int Ed 50:5556–5559. doi:10.1002/anie.201100370 CrossRefGoogle Scholar
  17. Levasseur A, Drula E, Lombard V et al (2013) Expansion of the enzymatic repertoire of the CAZy database to integrate auxiliary redox enzymes. Biotechnol Biofuels 6:41–54. doi:10.1186/1754-6834-6-41 CrossRefGoogle Scholar
  18. Lo Leggio L, Simmons TJ, Poulsen JN et al (2015) Structure and boosting activity of a starch-degrading lytic polysaccharide monooxygenase. Nat Commun 6:1–9. doi:10.1038/ncomms6961 CrossRefGoogle Scholar
  19. Marsh J a, Singh VK, Jia Z, Forman-Kay JD (2006) Sensitivity of secondary structure propensities to sequence differences between alpha- and gamma-synuclein: implications for fibrillation. Protein Sci 15:2795–2804. doi:10.1110/ps.062465306 CrossRefGoogle Scholar
  20. Nakamura T, Mine S, Hagihara Y et al (2008) Tertiary structure and carbohydrate recognition by the chitin-binding domain of a hyperthermophilic chitinase from Pyrococcus furiosus. J Mol Biol 381:670–680. doi:10.1016/j.jmb.2008.06.006 CrossRefGoogle Scholar
  21. Orekhov VY, Jaravine VA (2011) Analysis of non-uniformly sampled spectra with multi-dimensional decomposition. Prog Nucl Magn Reson Spectrosc 59:271–292. doi:10.1016/j.pnmrs.2011.02.002 CrossRefGoogle Scholar
  22. Shen Y, Bax A (2013) Protein backbone and sidechain torsion angles predicted from NMR chemical shifts using artificial neural networks. J Biomol NMR 56:227–241. doi:10.1007/s10858-013-9741-y CrossRefGoogle Scholar
  23. Vaaje-Kolstad G, Westereng B, Horn SJ et al (2010) An oxidative enzyme boosting the enzymatic conversion of recalcitrant polysaccharides. Science 330:219–222. doi:10.1126/science.1192231 ADSCrossRefGoogle Scholar
  24. Vaaje-Kolstad G, Forsberg Z, Loose JS et al (2017) Structural diversity of lytic polysaccharide monooxygenases. Curr Opin Struct Biol 44:67–76. doi:10.1016/j.sbi.2016.12.012 CrossRefGoogle Scholar
  25. Xu GY, Ong E, Gilkes NR et al (1995) Solution structure of a cellulose-binding domain from Cellulomonas fimi by nuclear magnetic resonance spectroscopy. BioChemistry 34:6993–7009. doi:10.1021/bi00021a011 CrossRefGoogle Scholar
  26. Zhang H, Neal S, Wishart DS (2003) RefDB: a database of uniformly referenced protein chemical shifts. J Biomol NMR 25:173–195. doi:10.1023/A:1022836027055 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  1. 1.NOBIPOL, Department of Biotechnology and Food ScienceNTNU Norwegian University of Science and TechnologyTrondheimNorway
  2. 2.Faculty of Chemistry, Biotechnology and Food ScienceNorwegian University of Life SciencesÅsNorway

Personalised recommendations