Advertisement

Biomolecular NMR Assignments

, Volume 11, Issue 2, pp 127–131 | Cite as

1H, 15N, 13C resonance assignment of plant dehydrin early response to dehydration 10 (ERD10)

  • Cesyen Cedeño
  • Szymon Żerko
  • Peter Tompa
  • Wiktor Koźmiński
Article

Abstract

Early response to dehydration 10 protein (ERD10) is an intrinsically disordered protein from Arabidopsis thaliana. The protein is upregulated during stress however its mechanism of action at atomic level is not well understood. In the present work multidimensional NMR methodologies are used in order to facilitate the process of chemical shift assignment. The information provided here supports further NMR spectroscopy experiments aimed at elucidation of ERD10 behaviour during molecular recognition events with other proteins.

Keywords

NMR Intrinsically disordered proteins Dehydrins ERD10 Multidimensional NMR spectrosocopy 

Notes

Acknowledgements

CC and PT would like to thank Dr. Kris Pauwels for his critical assessment of this manuscript. CC was supported by the Marie Curie Initial Training Network project 264257 (IDPbyNMR). PT was supported by the Odysseus Grant G.0029.12 from Research Foundation Flanders (FWO).

Authors contribution

CC and SZ contributed equally performing experiments and writing the article.

Compliance with ethical standards

Conflict of interest

No conflict of interest is manifested.

References

  1. Amme S, Matros A, Schlesier B, Mock HP (2006) Proteome analysis of cold stress response in Arabidopsis thaliana using DIGE-technology. J Exp Bot 57(7):1537–1546. doi: 10.1093/jxb/erj129 CrossRefGoogle Scholar
  2. Battaglia M, Olvera-Carrillo Y, Garciarrubio A, Campos F, Covarrubias AA (2008) The enigmatic LEA proteins and other hydrophilins. Plant Physiol 148(1):6–24. doi: 10.1104/pp.108.120725 CrossRefGoogle Scholar
  3. Dure L, Greenway SC, Galau GA (1981) Developmental biochemistry of cotton seed embryogenesis and germination: changing messenger ribonucleic acid populations as shown by in vitro and in vivo protein synthesis. Biochemistry 20(14):4162–4168. doi: 10.1021/bi00517a033 CrossRefGoogle Scholar
  4. Goddard T, Kneller D (2008) SPARKY 3. University of California, San Francisco. https://www.cgl.ucsf.edu/home/sparky/
  5. Hundertmark M, Hincha DK (2008) (late embryogenesis abundant) proteins and their encoding genes in Arabidopsis thaliana. BMC Genom 9(1):118. doi: 10.1186/1471-2164-9-118 CrossRefGoogle Scholar
  6. Kawamura Y, Uemura M (2003) Mass spectrometric approach for identifying putative plasma membrane proteins of Arabidopsis leaves associated with cold acclimation. Plant J 36(2):141–154. doi: 10.1046/j.1365-313X.2003.01864.x CrossRefGoogle Scholar
  7. Kazimierczuk K, Koźmiński W, Zhukov I (2006) Two-dimensional fourier transform of arbitrarily sampled (NMR) data sets. J Magn Reson 179(2):323–328. doi: 10.1016/j.jmr.2006.02.001 ADSCrossRefGoogle Scholar
  8. Kazimierczuk K, Zawadzka A, Koźmiński W (2009) Narrow peaks and high dimensionalities: Exploiting the advantages of random sampling. J Magn Reson 197(2):219–228. doi: 10.1016/j.jmr.2009.01.003 ADSCrossRefGoogle Scholar
  9. Kazimierczuk K, Zawadzka-Kazimierczuk A, Koźmiński W (2010) Non-uniform frequency domain for optimal exploitation of non-uniform sampling. J Magn Reson 205(2):286–292. doi: 10.1016/j.jmr.2010.05.012 ADSCrossRefGoogle Scholar
  10. Nylander M, Svensson J, Palva ET, Welin BV (2001) Stress-induced accumulation and tissue-specific localization of dehydrins in Arabidopsis thaliana. Plant Mol Biol 45(3):263–279. doi: 10.1023/A:1006469128280 CrossRefGoogle Scholar
  11. Skriver K, Mundy J (1990) Gene expression in response to abscisic acid and osmotic stress. Plant Cell 2(6):503–512. doi: 10.1105/tpc.2.6.503 CrossRefGoogle Scholar
  12. Stanek J, Koźmiński W (2010) Iterative algorithm of discrete fourier transform for processing randomly sampled nmr data sets. J Biomol NMR 47(1):65–77. doi: 10.1007/s10858-010-9411-2 CrossRefGoogle Scholar
  13. Tamiola K, Acar B, Mulder FAA (2010) Sequence-specific random coil chemical shifts of intrinsically disordered proteins. J Am Chem Soc 132(51):18000–18003. doi: 10.1021/ja105656t CrossRefGoogle Scholar
  14. Zawadzka-Kazimierczuk A, Koźmiński W, Sandlerowá H (2012) High dimensional and high resolution pulse sequences for backbone resonance assignment of intrinsically disordered proteins. J Biomol NMR 52(4):329–337. doi: 10.1007/s10858-012-9613-x CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  1. 1.VIB Structural Biology Research Center (SBRC)Vrije Universiteit Brussel (VUB)BrusselsBelgium
  2. 2.Faculty of ChemistryBiological and Chemical Research Centre University of Warsaw. Żwirki i Wigury 101WarsawPoland
  3. 3.Institute of EnzymologyResearch Centre for Natural Sciences Hungarian Academy of SciencesBudapestHungary

Personalised recommendations