Advertisement

Biomolecular NMR Assignments

, Volume 10, Issue 2, pp 367–371 | Cite as

Resonance assignments of a VapC family toxin from Clostridium thermocellum

  • Chen Wang
  • Jinsong Xuan
  • Qiu Cui
  • Yingang Feng
Article

Abstract

Toxin–antitoxin (TA) systems widely exist in bacterial plasmids, phages, and chromosomes and play important roles in growth persistence and host-pathogen interaction. Virulence associated protein BC (VapBC) family TAs are the most abundant TAs in bacteria and many pathogens contain a large number of vapBC loci in the genome which have been extensively studied. Clostridium thermocellum, a cellulolytic anaerobic gram-positive bacterium with promising applications in biofuel production, also contains a VapBC TA in the genome. Despite the structures of several VapBC family TAs have been determined, the toxin and anti-toxin components of C. thermocellum VapBC have very low sequence identity to the proteins in PDB. Therefore, the structure and functional mechanism of this TA is largely unknown. Here we reported the NMR resonance assignments of the VapC toxin from C. thermocellum as a basis for further structural and functional studies.

Keywords

VapBC toxin–antitoxin Clostridium thermocellum NMR Chemical shift assignment 

Notes

Acknowledgments

We thank Dr. Jinfa Ying (in the Ad Bax group of NIDDK, NIH) for providing SMILE software and helpful comments for the NUS data processing. This work was supported by National Natural Science Foundation of China (Grant Nos. 31270784 to Y.F. and 31300635 to J.X.) and Chinese Government Scholarship (No. 201506465020 to J.X.).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Akinosho H, Yee K, Close D, Ragauskas A (2014) The emergence of Clostridium thermocellum as a high utility candidate for consolidated bioprocessing applications. Front Chem 2:66. doi: 10.3389/fchem.2014.00066 CrossRefGoogle Scholar
  2. Arcus VL, McKenzie JL, Robson J, Cook GM (2011) The PIN-domain ribonucleases and the prokaryotic VapBC toxin–antitoxin array. Protein Eng Des Sel 24(1–2):33–40. doi: 10.1093/protein/gzq081 CrossRefGoogle Scholar
  3. Das U, Pogenberg V, Subhramanyam UKT, Wilmanns M, Gourinath S, Srinivasan A (2014) Crystal structure of the VapBC-15 complex from Mycobacterium tuberculosis reveals a two-metal ion dependent PIN-domain ribonuclease and a variable mode of toxin–antitoxin assembly. J Struct Biol 188(3):249–258. doi: 10.1016/j.jsb.2014.10.002 CrossRefGoogle Scholar
  4. Delaglio F, Grzesiek S, Vuister GW, Zhu G, Pfeifer J, Bax A (1995) NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J Biomol NMR 6(3):277–293. doi: 10.1007/bf00197809 CrossRefGoogle Scholar
  5. Dienemann C, Boggild A, Winther KS, Gerdes K, Brodersen DE (2011) Crystal structure of the VapBC toxin–antitoxin complex from Shigella flexneri reveals a hetero-octameric DNA-binding assembly. J Mol Biol 414(5):713–722. doi: 10.1016/j.jmb.2011.10.024 CrossRefGoogle Scholar
  6. Geerds C, Wohlmann J, Haas A, Niemann HH (2014) Structure of Rhodococcus equi virulence-associated protein B (VapB) reveals an eight-stranded antiparallel β-barrel consisting of two Greek-key motifs. Acta Crystallogr F 70:866–871. doi: 10.1107/S2053230x14009911 CrossRefGoogle Scholar
  7. Gerdes K, Christensen SK, Lobner-Olesen A (2005) Prokaryotic toxin–antitoxin stress response loci. Nat Rev Microbiol 3(5):371–382. doi: 10.1038/nrmicro1147 CrossRefGoogle Scholar
  8. Hamilton B, Manzella A, Schmidt K, DiMarco V, Butler JS (2014) Analysis of non-typeable Haemophilous influenzae VapC1 mutations reveals structural features required for toxicity and flexibility in the active site. PLoS ONE 9(11):e112921. doi: 10.1371/journal.pone.0112921 ADSCrossRefGoogle Scholar
  9. Johnson BA, Blevins RA (1994) NMRView: a computer program for the visualization and analysis of NMR data. J Biomol NMR 4(5):603–614. doi: 10.1007/Bf00404272 CrossRefGoogle Scholar
  10. Lee IG, Lee SJ, Chae S, Lee KY, Kim JH, Lee BJ (2015) Structural and functional studies of the Mycobacterium tuberculosis VapBC30 toxin–antitoxin system: implications for the design of novel antimicrobial peptides. Nucleic Acids Res 43(15):7624–7637. doi: 10.1093/nar/gkv689 CrossRefGoogle Scholar
  11. Markley JL, Bax A, Arata Y, Hilbers CW, Kaptein R, Sykes BD, Wright PE, Wuthrich K (1998) Recommendations for the presentation of NMR structures of proteins and nucleic acids (IUPAC Recommendations 1998). Pure Appl Chem 70(1):117–142. doi: 10.1351/pac199870010117 CrossRefGoogle Scholar
  12. Martinez-Garcia E, Benedetti I, Hueso A, De Lorenzo V (2015) Mining environmental plasmids for synthetic biology parts and devices. Microbiol Spectr 3(1):PLAS-0033-2014. doi: 10.1128/microbiolspec.PLAS-0033-2014 CrossRefGoogle Scholar
  13. Mate MJ, Vincentelli R, Foos N, Raoult D, Cambillau C, Ortiz-Lombardia M (2012) Crystal structure of the DNA-bound VapBC2 antitoxin/toxin pair from Rickettsia felis. Nucleic Acids Res 40(7):3245–3258. doi: 10.1093/nar/gkr1167 CrossRefGoogle Scholar
  14. Miallau L, Faller M, Chiang J, Arbing M, Guo F, Cascio D, Eisenberg D (2009) Structure and proposed activity of a member of the VapBC family of toxin–antitoxin systems VapBC-5 from Mycobacterium tuberculosis. J Biol Chem 284(1):276–283. doi: 10.1074/jbc.M805061200 CrossRefGoogle Scholar
  15. Min AB, Miallau L, Sawaya MR, Habel J, Cascio D, Eisenberg D (2012) The crystal structure of the Rv0301-Rv0300 VapBC-3 toxin–antitoxin complex from M. tuberculosis reveals a Mg2+ ion in the active site and a putative RNA-binding site. Protein Sci 21(11):1754–1767. doi: 10.1002/pro.2161 CrossRefGoogle Scholar
  16. Page R, Peti W (2016) Toxin–antitoxin systems in bacterial growth arrest and persistence. Nat Chem Biol 12(4):208–214. doi: 10.1038/Nchembio.2044 CrossRefGoogle Scholar
  17. Park SJ, Son WS, Lee BJ (2013) Structural overview of toxin–antitoxin systems in infectious bacteria: a target for developing antimicrobial agents. Biochim Biophys Acta 1834(6):1155–1167. doi: 10.1016/j.bbapap.2013.02.027 CrossRefGoogle Scholar
  18. Sevillano L, Diaz M, Santamaria RI (2013) Stable expression plasmids for Streptomyces based on a toxin–antitoxin system. Microb Cell Fact. doi: 10.1186/1475-2859-12-39 Google Scholar
  19. Shao YC, Harrison EM, Bi DX, Tai C, He XY, Ou HY, Rajakumar K, Deng ZX (2011) TADB: a web-based resource for Type 2 toxin–antitoxin loci in bacteria and archaea. Nucleic Acids Res 39:D606–D611. doi: 10.1093/nar/gkq908 CrossRefGoogle Scholar
  20. Shen Y, Bax A (2013) Protein backbone and sidechain torsion angles predicted from NMR chemical shifts using artificial neural networks. J Biomol NMR 56(3):227–241. doi: 10.1007/s10858-013-9741-y CrossRefGoogle Scholar
  21. Syed MA, Levesque CM (2012) Chromosomal bacterial type II toxin–antitoxin systems. Can J Microbiol 58(5):553–562. doi: 10.1139/w2012-025 CrossRefGoogle Scholar
  22. Wen YR, Behiels E, Devreese B (2014) Toxin–antitoxin systems: their role in persistence, biofilm formation, and pathogenicity. Pathog Dis 70(3):240–249. doi: 10.1111/2049-632x.12145 CrossRefGoogle Scholar
  23. Williams JJ, Hergenrother PJ (2012) Artificial activation of toxin–antitoxin systems as an antibacterial strategy. Trends Microbiol 20(6):291–298CrossRefGoogle Scholar
  24. Xu K, Dedic E, Brodersen DE (2016) Structural analysis on the active site architecture of the VapC toxin from Shigella flexneri. Proteins. doi: 10.1002/prot.25002 Google Scholar
  25. Xuan JS, Song XX, Wang JF, Feng YA (2011) Resonance assignments of a putative PilT N-terminus domain protein SSO1118 from hyperthermophilic archaeon Sulfolobus solfataricus P2. Biomol NMR Assign 5(2):161–164. doi: 10.1007/s12104-010-9291-0 CrossRefGoogle Scholar
  26. Xuan JS, Song XX, Chen C, Wang JF, Feng YG (2013) A PilT N-terminus domain protein SSO1118 from hyperthemophilic archaeon Sulfolobus solfataricus P2. J Biomol NMR 57(4):363–368. doi: 10.1007/s10858-013-9794-y CrossRefGoogle Scholar
  27. Yeo CC, Abu Bakar F, Chan WT, Espinosa M, Harikrishna JA (2016) Heterologous expression of toxins from bacterial toxin–antitoxin systems in eukaryotic cells: strategies and applications. Toxins. doi: 10.3390/toxins8020049 Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Department of Biological Science and Engineering, School of Chemical and Biological EngineeringUniversity of Science and Technology BeijingBeijingChina
  2. 2.Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess TechnologyChinese Academy of SciencesQingdaoChina
  3. 3.CAS Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess TechnologyChinese Academy of SciencesQingdaoChina

Personalised recommendations