Biomolecular NMR Assignments

, Volume 10, Issue 2, pp 277–280 | Cite as

Backbone and side-chain 1H, 13C, and 15N chemical shift assignments for the apo-form of the lytic polysaccharide monooxygenase NcLPMO9C

  • Gaston Courtade
  • Reinhard Wimmer
  • Maria Dimarogona
  • Mats Sandgren
  • Vincent G. H. Eijsink
  • Finn L. Aachmann


The apo-form of the 23.3 kDa catalytic domain of the AA9 family lytic polysaccharide monooxygenase NcLPMO9C from Neurospora crassa has been isotopically labeled and recombinantly expressed in Pichia pastoris. In this paper, we report the 1H, 13C, and 15N chemical shift assignments of this LPMO.


Lytic polysaccharide monooxygenase LPMO AA9 Cellulose Xyloglucan 



This work was financed by SO-funds from the Norwegian University of Science and Technology (NTNU) and by the MARPOL project, the Norwegian NMR Platform and a FRINAT Project, all from the Research Council of Norway (Grant Numbers 221576, 226244, and 214613, respectively). The NMR laboratory at Aalborg University is supported by the Obel, SparNord and Carlsberg Foundations.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Aachmann FL, Eijsink VGH, Vaaje-Kolstad G (2011) 1H, 13C, 15N resonance assignment of the chitin-binding protein CBP21 from Serratia marcescens. Biomol NMR Assign 5:117–119. doi: 10.1007/s12104-010-9281-2 CrossRefGoogle Scholar
  2. Aachmann FL, Sørlie M, Skjåk-Bræk G et al (2012) NMR structure of a lytic polysaccharide monooxygenase provides insight into copper binding, protein dynamics, and substrate interactions. Proc Natl Acad Sci USA 109:18779–18784. doi: 10.1073/pnas.1208822109 ADSCrossRefGoogle Scholar
  3. Agger JW, Isaksen T, Várnai A et al (2014) Discovery of LPMO activity on hemicelluloses shows the importance of oxidative processes in plant cell wall degradation. Proc Natl Acad Sci USA. doi: 10.1073/pnas.1323629111 Google Scholar
  4. Beeson WT, Vu VV, Span EA et al (2015) Cellulose degradation by polysaccharide monooxygenases. Annu Rev Biochem 84:923–946. doi: 10.1146/annurev-biochem-060614-034439 CrossRefGoogle Scholar
  5. Borisova AS, Isaksen T, Dimarogona M et al (2015) Structural and functional characterization of a lytic polysaccharide monooxygenase with broad substrate specificity. J Biol Chem 290:22955–22969. doi: 10.1074/jbc.M115.660183 CrossRefGoogle Scholar
  6. Courtade G, Balzer S, Forsberg Z et al (2014) 1H, 13C, 15N resonance assignment of the chitin-active lytic polysaccharide monooxygenase BlLPMO10A from Bacillus licheniformis. Biomol NMR Assign. doi: 10.1007/s12104-014-9575-x Google Scholar
  7. Gasteiger E, Hoogland C, Gattiker A et al (2005) Protein identification and analysis tools on the ExPASy server. In: Walker JM (ed) The proteomics protocols handook. Springer, New York, pp 571–607CrossRefGoogle Scholar
  8. Hemsworth GR, Davies GJ, Walton PH (2013) Recent insights into copper-containing lytic polysaccharide mono-oxygenases. Curr Opin Struct Biol 23:660–668. doi: 10.1016/ CrossRefGoogle Scholar
  9. Hemsworth GR, Henrissat B, Davies GJ, Walton PH (2014) Discovery and characterization of a new family of lytic polysaccharide monooxygenases. Nat Chem Biol 10:122–126. doi: 10.1038/nchembio.1417 CrossRefGoogle Scholar
  10. Hemsworth GR, Johnston EM, Davies GJ, Walton PH (2015) Lytic polysaccharide monooxygenases in biomass conversion. Trends Biotechnol 33:747–761. doi: 10.1016/j.tibtech.2015.09.006 CrossRefGoogle Scholar
  11. Isaksen T, Westereng B, Aachmann FL et al (2013) A C4-oxidizing lytic polysaccharide monooxygenase cleaving both cellulose and cello-oligosaccharides. J Biol Chem 289:2632–2642. doi: 10.1074/jbc.M113.530196 CrossRefGoogle Scholar
  12. Keller R (2004) The computer aided resonance assignment tutorial, 1st edn. CANTINA Verlag, GoldauGoogle Scholar
  13. Kim S, Ståhlberg J, Sandgren M et al (2014) Quantum mechanical calculations suggest that lytic polysaccharide monooxygenases use a copper-oxyl, oxygen-rebound mechanism. Proc Natl Acad Sci USA 111:149–154. doi: 10.1073/pnas.1316609111 ADSCrossRefGoogle Scholar
  14. Kittl R, Kracher D, Burgstaller D et al (2012) Production of four Neurospora crassa lytic polysaccharide monooxygenases in Pichia pastoris monitored by a fluorimetric assay. Biotechnol Biofuels 5:79. doi: 10.1186/1754-6834-5-79 CrossRefGoogle Scholar
  15. Levasseur A, Drula E, Lombard V et al (2013) Expansion of the enzymatic repertoire of the CAZy database to integrate auxiliary redox enzymes. Biotechnol Biofuels 6:41. doi: 10.1186/1754-6834-6-41 CrossRefGoogle Scholar
  16. Lo Leggio L, Simmons TJ, Poulsen JN et al (2015) Structure and boosting activity of a starch-degrading lytic polysaccharide monooxygenase. Nat Commun 6:1–9. doi: 10.1038/ncomms6961 CrossRefGoogle Scholar
  17. Phillips CM, Beeson WT, Cate JH, Marletta MA (2011) Cellobiose dehydrogenase and a copper-dependent polysaccharide monooxygenase potentiate cellulose degradation by Neurospora crassa. ACS Chem Biol 6:1399–1406. doi: 10.1021/cb200351y CrossRefGoogle Scholar
  18. Pickford AR, O’Leary JM (2004) Isotopic labeling of recombinant proteins from the methylotrophic yeast Pichia pastoris. Methods Mol Biol 278:17–33. doi: 10.1385/1-59259-809-9:017 Google Scholar
  19. Quinlan RJ, Sweeney MD, Lo Leggio L et al (2011) Insights into the oxidative degradation of cellulose by a copper metalloenzyme that exploits biomass components. Proc Natl Acad Sci USA 108:15079–15084. doi: 10.1073/pnas.1105776108 ADSCrossRefGoogle Scholar
  20. Shen Y, Bax A (2013) Protein backbone and sidechain torsion angles predicted from NMR chemical shifts using artificial neural networks. J Biomol NMR 56:227–241. doi: 10.1007/s10858-013-9741-y CrossRefGoogle Scholar
  21. Vaaje-Kolstad G, Horn SJ, van Aalten DMF et al (2005) The non-catalytic chitin-binding protein CBP21 from Serratia marcescens is essential for chitin degradation. J Biol Chem 280:28492–28497. doi: 10.1074/jbc.M504468200 CrossRefGoogle Scholar
  22. Vaaje-Kolstad G, Westereng B, Horn SJ et al (2010) An oxidative enzyme boosting the enzymatic conversion of recalcitrant polysaccharides. Science 330:219–222. doi: 10.1126/science.1192231 ADSCrossRefGoogle Scholar
  23. Zhang H, Neal S, Wishart DS (2003) RefDB: a database of uniformly referenced protein chemical shifts. J Biomol NMR 25:173–195. doi: 10.1023/A:1022836027055 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Gaston Courtade
    • 1
  • Reinhard Wimmer
    • 2
  • Maria Dimarogona
    • 3
  • Mats Sandgren
    • 3
  • Vincent G. H. Eijsink
    • 4
  • Finn L. Aachmann
    • 1
  1. 1.NOBIPOL, Department of BiotechnologyNorwegian University of Science and Technology (NTNU)TrondheimNorway
  2. 2.Department of Chemistry and BioscienceAalborg UniversityAalborg ØDenmark
  3. 3.Department of Chemistry and BiotechnologySwedish University of Agricultural SciencesUppsalaSweden
  4. 4.Department of Chemistry, Biotechnology and Food ScienceNorwegian University of Life SciencesÅsNorway

Personalised recommendations