Biomolecular NMR Assignments

, Volume 10, Issue 1, pp 199–202 | Cite as

Resonance assignment of an engineered amino-terminal domain of a major ampullate spider silk with neutralized charge cluster

  • Daniel SchaalEmail author
  • Joschka Bauer
  • Kristian Schweimer
  • Thomas Scheibel
  • Paul Rösch
  • Stephan Schwarzinger


Spider dragline fibers are predominantly made out of the major ampullate spidroins (MaSp) 1 and 2. The assembly of dissolved spidroin into a stable fiber is highly controlled for example by dimerization of its amino-terminal domain (NRN) upon acidification, as well as removal of sodium chloride along the spinning duct. Clustered residues D39, E76 and E81 are the most highly conserved residues of the five-helix bundle, and they are hypothesized to be key residues for switching between a monomeric and a dimeric conformation. Simultaneous replacement of these residues by their non-titratable analogues results in variant D39N/E76Q/E81Q, which is supposed to fold into an intermediate conformation between that of the monomeric and the dimeric state at neutral pH. Here we report the resonance assignment of Latrodectus hesperus NRN variant D39N/E76Q/E81Q at pH 7.2 obtained by high-resolution triple resonance NMR spectroscopy.


Spider silk Amino-terminal domain Major ampullate spidroin 1 Dimerization Latrodectus hesperus Acidic charge cluster 



Funding was obtained from the Deutsche Forschungsgemeinschaft DFG (SFB 840).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical standards

The authors declare that the experiments in this study comply with the current laws of the country in which they were performed.


  1. Askarieh G et al (2010) Self-assembly of spider silk proteins is controlled by a pH-sensitive relay. Nature 465:236–238ADSCrossRefGoogle Scholar
  2. Bini E, Knight DP, Kaplan DL (2004) Mapping domain structures in silks from insects and spiders related to protein assembly. J Mol Biol 335:27–40CrossRefGoogle Scholar
  3. Chen GF et al (2012) Full-length minor ampullate spidroin gene sequence. PLoS One 7(12):e52293ADSCrossRefGoogle Scholar
  4. Gaines WA, Sehorn MG, Marcotte WR (2010) Spidroin N-terminal domain promotes a pH-dependent association of silk proteins during self-assembly. J Biol Chem 285:40745–40753CrossRefGoogle Scholar
  5. Garb JE, Ayoub NA, Hayashi CY (2010) Untangling spider silk evolution with spidroin terminal domains. BMC Evol Biol 10:243CrossRefGoogle Scholar
  6. Hagn F, Eisoldt L, Hardy JG, Vendrely C, Coles M, Scheibel T, Kessler H (2010) A highly conserved spider silk domain acts as a molecular switch that controls fibre assembly. Nature 465:239–242ADSCrossRefGoogle Scholar
  7. Hagn F, Thamm C, Scheibel T, Kessler H (2011) pH-dependent dimerization and salt-dependent stabilization of the N-terminal domain of spider dragline silk—implications for fiber formation. Angew Chem Int Ed 50:310–313CrossRefGoogle Scholar
  8. Hinman MB, Lewis RV (1992) Isolation of a clone encoding a second dragline silk fibroin. Nephila clavipes dragline silk is a two-protein fiber. J Biol Chem 267:19320–19324Google Scholar
  9. Kronqvist N et al (2014) Sequential pH-driven dimerization and stabilization of the N-terminal domain enables rapid spider silk formation. Nat Commun 5:3254ADSCrossRefGoogle Scholar
  10. Landreh M et al (2010) A pH-dependent dimer lock in spider silk protein. J Mol Biol 404:328–336CrossRefGoogle Scholar
  11. Marion D, Driscoll PC, Kay LE, Wingfield PT, Bax A, Gronenborn AM, Clore GM (1989) Overcoming the overlap problem in the assignment of 1H NMR spectra of larger proteins by use of three-dimensional heteronuclear 1H-15 N Hartmann-Hahn-multiple quantum coherence and nuclear Overhauser-multiple quantum coherence spectroscopy: application to interleukin 1 beta. Biochemistry 28:6150–6156CrossRefGoogle Scholar
  12. Mori S, Abeygunawardana C, Johnson MO, Vanzijl PCM (1995) Improved sensitivity of Hsqc spectra of exchanging protons at short interscan delays using a new fast Hsqc (Fhsqc) detection scheme that avoids water saturation. J Magn Reson Ser B 108:94–98CrossRefGoogle Scholar
  13. Rising A, Hjalm G, Engstrom W, Johansson J (2006) N-terminal nonrepetitive domain common to dragline, flagelliform, and cylindriform spider silk proteins. Biomacromolecules 7:3120–3124CrossRefGoogle Scholar
  14. Sattler M, Schleucher J, Griesinger C (1999) Heteronuclear multidimensional NMR experiments for the structure determination of proteins in solution empolying pulsed field gradients. Prog NMR Spectrosc 34:93–158CrossRefGoogle Scholar
  15. Shen Y, Bax A (2013) Protein backbone and sidechain torsion angles predicted from NMR chemical shifts using artificial neural networks. J Biomol NMR 56:227–241CrossRefGoogle Scholar
  16. Vranken WF et al (2005) The CCPN data model for NMR spectroscopy: development of a software pipeline. Proteins 59:687–696CrossRefGoogle Scholar
  17. Xu M, Lewis RV (1990) Structure of a protein superfiber: spider dragline silk. Proc Natl Acad Sci 87:7120–7124ADSCrossRefGoogle Scholar
  18. Zuiderweg ER, Fesik SW (1989) Heteronuclear three-dimensional NMR spectroscopy of the inflammatory protein C5a. Biochemistry 28:2387–2391CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Daniel Schaal
    • 2
    • 3
    Email author
  • Joschka Bauer
    • 1
  • Kristian Schweimer
    • 2
    • 3
  • Thomas Scheibel
    • 1
    • 3
    • 4
    • 5
    • 6
  • Paul Rösch
    • 2
    • 3
  • Stephan Schwarzinger
    • 2
    • 3
  1. 1.Lehrstuhl BiomaterialienUniversität BayreuthBayreuthGermany
  2. 2.Lehrstuhl BiopolymereUniversität BayreuthBayreuthGermany
  3. 3.Forschungszentrum für Bio-Makromoleküle (BIOmac)Universität BayreuthBayreuthGermany
  4. 4.Bayreuther Zentrum für Kolloide und Grenzflächen (BZKG)Universität BayreuthBayreuthGermany
  5. 5.Bayreuther Materialzentrum (BayMat)Universität BayreuthBayreuthGermany
  6. 6.Bayreuther Zentrum für Molekulare Biowissenschaften (BZMB)Universität BayreuthBayreuthGermany

Personalised recommendations