Biomolecular NMR Assignments

, Volume 10, Issue 1, pp 179–182 | Cite as

1H, 13C and 15N backbone resonance assignment of the intrinsically disordered region of the nuclear envelope protein emerin

  • Camille Samson
  • Isaline Herrada
  • Florian Celli
  • Francois-Xavier Theillet
  • Sophie Zinn-JustinEmail author


Human emerin is an inner nuclear membrane protein involved in the response of the nucleus to mechanical stress. It contributes to the physical connection between the cytoskeleton and the nucleoskeleton. It is also involved in chromatin organization. Its N-terminal region is nucleoplasmic and comprises a globular LEM domain from residue 1 to residue 43. The three-dimensional structure of this LEM domain in complex with the chromatin BAF protein was solved from NMR data. Apart from the LEM domain, the nucleoplasmic region of emerin, from residue 44 to residue 221, is predicted to be intrinsically disordered. Mutations in this region impair binding to several emerin partners as lamin A, actin or HDAC3. However the molecular details of these recognition defects are unknown. Here we report 1H, 15N, 13CO, 13Cα and 13Cβ NMR chemical shift assignments of the emerin fragment from residue 67 to residue 170, which is sufficient for nuclear localization and involved in lamin A binding. Chemical shift analysis confirms that this fragment is intrinsically disordered in 0 and 8 M urea.


Nuclear envelope Emerin Intrinsically disordered protein Urea NMR spectroscopy Muscular dystrophy 



We thank the French Association against Myopathies (AFM) (research Grant No. 17243 to S.Z.J. and fellowship No. 18159 to C.S.) and the Foundation for Medical Research (FRM) (Grant. FDT20140931008 to I.H.) for providing financial support to this project. We also thank the Leibniz-Institut für Molekular Pharmakologie (FMP) for access to the NMR facility.


  1. Berk JM, Tifft KE, Wilson KL (2013) The nuclear envelope LEM-domain protein emerin. Nucleus 4:298–314. doi: 10.4161/nucl.25751 CrossRefGoogle Scholar
  2. Bertrand AT et al (2014) Cellular microenvironments reveal defective mechanosensing responses and elevated YAP signaling in LMNA-mutated muscle precursors. J Cell Sci 127:2873–2884. doi: 10.1242/jcs.144907 CrossRefGoogle Scholar
  3. Bione S, Maestrini E, Rivella S, Mancini M, Regis S, Romeo G, Toniolo D (1994) Identification of a novel X-linked gene responsible for Emery–Dreifuss muscular dystrophy. Nat Genet 8:323–327. doi: 10.1038/ng1294-323 CrossRefGoogle Scholar
  4. Cai M, Huang Y, Suh JY, Louis JM, Ghirlando R, Craigie R, Clore GM (2007) Solution NMR structure of the barrier-to-autointegration factor-Emerin complex. J Biol Chem 282:14525–14535. doi: 10.1074/jbc.M700576200 CrossRefGoogle Scholar
  5. Clements L, Manilal S, Love DR, Morris GE (2000) Direct interaction between emerin and lamin A. Biochem Biophys Res Commun 267:709–714. doi: 10.1006/bbrc.1999.2023 CrossRefGoogle Scholar
  6. Ellis JA, Craxton M, Yates JR, Kendrick-Jones J (1998) Aberrant intracellular targeting and cell cycle-dependent phosphorylation of emerin contribute to the Emery-Dreifuss muscular dystrophy phenotype. J Cell Sci 111(Pt 6):781–792Google Scholar
  7. Haque F et al (2006) SUN1 interacts with nuclear lamin A and cytoplasmic nesprins to provide a physical connection between the nuclear lamina and the cytoskeleton. Mol Cell Biol 26:3738–3751. doi: 10.1128/MCB.26.10.3738-3751.2006 CrossRefGoogle Scholar
  8. Herrada I, Bourgeois B, Samson C, Buendia B, Worman HJ, Zinn-Justin S (2015) Purification and structural analysis of LEM-domain proteins. Methods EnzymolGoogle Scholar
  9. Ho CY, Jaalouk DE, Vartiainen MK, Lammerding J (2013) Lamin A/C and emerin regulate MKL1-SRF activity by modulating actin dynamics. Nature 497:507–511. doi: 10.1038/nature12105 ADSCrossRefGoogle Scholar
  10. Shen Y, Bax A (2010) Prediction of Xaa-Pro peptide bond conformation from sequence and chemical shifts. J Biomol NMR 46:199–204. doi: 10.1007/s10858-009-9395-y CrossRefGoogle Scholar
  11. Swift J, Discher DE (2014) The nuclear lamina is mechano-responsive to ECM elasticity in mature tissue. J Cell Sci 127:3005–3015. doi: 10.1242/jcs.149203 CrossRefGoogle Scholar
  12. Tamiola K, Acar B, Mulder FA (2010) Sequence-specific random coil chemical shifts of intrinsically disordered proteins. J Am Chem Soc 132:18000–18003. doi: 10.1021/ja105656t CrossRefGoogle Scholar
  13. Vranken WF et al (2005) The CCPN data model for NMR spectroscopy: development of a software pipeline. Proteins 59:687–696. doi: 10.1002/prot.20449 CrossRefGoogle Scholar
  14. Wolff N, Gilquin B, Courchay K, Callebaut I, Worman HJ, Zinn-Justin S (2001) Structural analysis of emerin, an inner nuclear membrane protein mutated in X-linked Emery–Dreifuss muscular dystrophy. FEBS Lett 501:171–176CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Laboratoire de Biologie Structurale et Radiobiologie, Institute for Integrative Biology of the Cell (I2BC), CNRSUniv. Paris South and IBITECS CEAGif-sur-Yvette CedexFrance
  2. 2.Department of NMR-assisted Structural BiologyLeibniz-Institut für Molekular Pharmakologie (FMP)BerlinGermany

Personalised recommendations