Advertisement

Biomolecular NMR Assignments

, Volume 10, Issue 1, pp 107–115 | Cite as

Sequence-specific solid-state NMR assignments of the mouse ASC PYRIN domain in its filament form

  • Francesco Ravotti
  • Lorenzo Sborgi
  • Riccardo Cadalbert
  • Matthias Huber
  • Adam Mazur
  • Petr Broz
  • Sebastian Hiller
  • Beat H. Meier
  • Anja Böckmann
Article

Abstract

The apoptosis-associated speck-like protein (ASC protein) plays a central role in eukaryotic innate immune response. Upon infection, multiple ASC molecules assemble into long filaments, which are fundamental for triggering the cellular defense mechanism by starting an inflammatory cascade with the activation of caspase-1. ASC is composed of two domains, the C-terminal caspase-recruitment domain, which is involved in the recruitment of the caspase, and the N-terminal PYRIN domain (PYD), which is responsible for the formation of the filament. Here we present the 13C and 15N chemical shift assignment for filaments formed by the PYD of mouse ASC, a 91-residue protein. The backbone between residues 4 and 84 is assigned without interruption. Also, 86 % of the sidechain resonances for this stretch are assigned. Residues 1–3 and 85–91 show unfavorable dynamics and are not observed. Secondary chemical-shift analysis shows the presence of six α-helices.

Keywords

Mouse ASC PYRIN domain Filament Solid-state NMR Sequential assignments 

Notes

Acknowledgments

This work was supported SNF 200020_146757, 200020_159707 and ANR-12-BS08-0013-01, ANR-14-CE09-0024B.

References

  1. Böckmann A, Gardiennet C, Verel R, Hunkeler A, Loquet A, Pintacuda G, Emsley L, Meier BH, Lesage A (2009) Characterization of different water pools in solid-state NMR protein samples. J Biomol NMR 45:319–327CrossRefGoogle Scholar
  2. Chevelkov V, Shi C, Fasshuber HK, Becker S, Lange A (2013) Efficient band-selective homonuclear CO-CA cross-polarization in protonated proteins. J Biomol NMR 56:303–311CrossRefGoogle Scholar
  3. de Alba E (2009) Structure and interdomain dynamics of apoptosis-associated speck-like protein containing a CARD (ASC). J Biol Chem 284:32932–32941CrossRefGoogle Scholar
  4. Fogh R, Ionides J, Ulrich E, Boucher W, Vranken W, Linge JP, Habec M, Rieping W, Bhat TN, Westbrook J, Henrick K, Gilliland G, Berman H, Thornton J, Nilges M, Markley J, Laue E (2002) The CCPN project: an interim report on a data model for the NMR community. Nat Struct Biol 9(6):416–418CrossRefGoogle Scholar
  5. Gottlieb H, Kotlyar V, Nudelman A (1997) NMR chemical shifts of common laboratory solvents as trace impurities. J Org Chem 62:7512CrossRefGoogle Scholar
  6. Habenstein B, Wasmer C, Bousset L, Sourigues Y, Schütz A, Loquet A, Meier BH, Melki R, Böckmann A (2011) Extensive de novo solid-state NMR assignment of the 33 kDa C-terminal domain of the Ure2 prion. J Biomol NMR 51:235–243CrossRefGoogle Scholar
  7. Hu Z, Yan C, Liu P, Huang Z et al (2013) Crystal structure of NLRC4 reveals its autoinhibition mechanism. Science 341:172–175ADSCrossRefGoogle Scholar
  8. Liepinsh E, Barbals R, Dahl E, Sharipo A et al (2003) The death-domain fold of the ASC PYRIN domain, presenting a basis for PYRIN/PYRIN recognition. J Mol Biol 332:1155–1163CrossRefGoogle Scholar
  9. Lu A, Magupalli VG, Ruan J, Yin Q et al (2014) Unified polymerization mechanism for the assembly of ASC-dependent inflammasomes. Cell 156:1193–1206CrossRefGoogle Scholar
  10. Masumoto J, Taniguchi S, Ayukawa K, Sarvotham H et al (1999) ASC, a novel 22-kDa protein, aggregates during apoptosis of human promyelocytic leukemia HL-60 cells. J Biol Chem 274:33835–33838CrossRefGoogle Scholar
  11. Moriya M, Taniguchi S, Wu P, Liepinsh E et al (2005) Role of charged and hydrophobic residues in the oligomerization of the PYRIN domain of ASC. Biochemistry 44:575–583CrossRefGoogle Scholar
  12. Schroder K, Tschopp J (2010) The inflammasomes. Cell 140:821–832CrossRefGoogle Scholar
  13. Schuetz A, Wasmer C, Habenstein B, Verel R, Greenwald J, Riek R, Böckmann A, Meier BH (2010) Protocols for the sequential solid-state NMR assignment of a uniformly labelled 25 kDa protein: HET-s(1-227). Chembiochem 11:1543–1551CrossRefGoogle Scholar
  14. Shen Y, Delaglio F, Cornilescu G, Bax A (2009) TALOS+: a hybrid method for predicting protein backbone torsion angles from NMR chemical shifts. J Biomol NMR 44:213–223CrossRefGoogle Scholar
  15. Srimathi T, Robbins SL, Dubas RL, Chang H et al (2008) J Biol Chem 283:15390–15398CrossRefGoogle Scholar
  16. Stevens TJ, Fogh RH, Boucher W, Higman VA, Eisenmenger F, Bardiaux B, van Rossum B-J, Oschkinat H, Laue ED (2011) A software framework for analysing solid-state MAS NMR data. J Biomol NMR 51(4):437–447CrossRefGoogle Scholar
  17. Vajjhala PR, Mirams RE, Hill JM (2012) Multiple binding sites on the pyrin domain of ASC protein allow self-association and interaction with NLRP3 protein. J Biol Chem 287:41732–41743CrossRefGoogle Scholar
  18. Vajjhala PR, Kaiser S, Smith SJ, Ong QR et al (2014) Crystal structure of NALP3 protein pyrin domain (PYD) and its implications in inflammasome assembly. J Biol Chem 289:23504–23519CrossRefGoogle Scholar
  19. Vranken W, Boucher W, Stevens T, Fogh R, Pajon A, Llinas P, Ulrich E, Markley J, Ionides J, Laue E (2005) The CCPN data model for NMR spectroscopy: development of a software pipeline. Proteins 59(4):687–696CrossRefGoogle Scholar
  20. Wang Y, Jardetzky O (2002) Probability-based protein secondary structure identification using combined NMR chemical-shift data. Protein Sci 11(4):852–861CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Francesco Ravotti
    • 1
  • Lorenzo Sborgi
    • 2
  • Riccardo Cadalbert
    • 1
  • Matthias Huber
    • 1
  • Adam Mazur
    • 2
    • 4
  • Petr Broz
    • 2
  • Sebastian Hiller
    • 2
  • Beat H. Meier
    • 1
  • Anja Böckmann
    • 3
  1. 1.Physical ChemistryETH ZurichZurichSwitzerland
  2. 2.BiozentrumUniversity of BaselBaselSwitzerland
  3. 3.Institut de Biologie et Chimie des Protéines, Bases Moléculaires et Structurales des Systèmes Infectieux, Labex Ecofect, UMR 5086 CNRSUniversité de LyonLyonFrance
  4. 4.Research IT, BiozentrumUniversity of BaselBaselSwitzerland

Personalised recommendations