Advertisement

Biomolecular NMR Assignments

, Volume 10, Issue 1, pp 101–105 | Cite as

NMR resonance assignments for the class II GTP binding RNA aptamer in complex with GTP

  • Antje C. Wolter
  • Elke Duchardt-Ferner
  • Amir H. Nasiri
  • Katharina Hantke
  • Christoph H. Wunderlich
  • Christoph Kreutz
  • Jens WöhnertEmail author
Article

Abstract

The structures of RNA-aptamer-ligand complexes solved in the last two decades were instrumental in realizing the amazing potential of RNA for forming complex tertiary structures and for molecular recognition of small molecules. For GTP as ligand the sequences and secondary structures for multiple families of aptamers were reported which differ widely in their structural complexity, ligand affinity and ligand functional groups involved in RNA-binding. However, for only one of these families the structure of the GTP-RNA complex was solved. In order to gain further insights into the variability of ligand recognition modes we are currently determining the structure of another GTP-aptamer—the so-called class II aptamer—bound to GTP using NMR-spectroscopy in solution. As a prerequisite for a full structure determination, we report here 1H, 13C, 15N and partial 31P-NMR resonance assignments for the class II GTP-aptamer bound to GTP.

Keywords

RNA NMR-assignment Triple resonance experiments Aptamer GTP Selective labeling 

Notes

Acknowledgments

We are grateful to Christian Richter and Manfred Strupf for maintenance of the NMR facility and to Heiko Keller and Kerstin Yacoub for providing the T7-RNA-polymerase. This work was supported by the Center for Biomolecular Magnetic Resonance (BMRZ) of the Johann-Wolfgang-Goethe-University Frankfurt and the Deutsche Forschungsgemeinschaft (DFG) (Grant WO 901/1-1).

References

  1. Aquino-Jarquin G, Toscano-Garibay J (2011) RNA aptamer evolution: two decades of SELEction. Int J Mol Sci 12:9155–9171CrossRefGoogle Scholar
  2. Carothers JM, Oestreich SC, Davis JH, Szostak JW (2004) Informational complexity and functional activity of RNA structures. J Am Chem Soc 126:5130–5137CrossRefGoogle Scholar
  3. Carothers JM, Oestreich SC, Szostak JW (2006a) Aptamers selected for higher-affinity binding are not more specific for the target ligand. J Am Chem Soc 128:7929–7937CrossRefGoogle Scholar
  4. Carothers JM, Davis JH, Chou JJ, Szostak JW (2006b) Solution structure of an informationally complex high-affinity RNA aptamer to GTP. RNA 12:567–579CrossRefGoogle Scholar
  5. Davis JH, Szostak JW (2002) Isolation of high-affinity GTP aptamers from partially structured RNA libraries. Proc Natl Acad Sci USA 99:11616–11621ADSCrossRefGoogle Scholar
  6. Dieckmann T, Suzuki E, Nakamura GK, Feigon J (1996) Solution structure of an ATP-binding RNA aptamer reveals a novel fold. RNA 2:628–640Google Scholar
  7. Dingley AJ, Grzesiek S (1998) Direct observation of hydrogen bonds in nucleic acid base pairs by internucleotide 2JNN couplings. J Am Chem Soc 120:8293–8297CrossRefGoogle Scholar
  8. Duchardt-Ferner E, Weigand JE, Ohlenschläger O, Schmidtke SR, Suess B, Wöhnert J (2010) Highly modular structure and ligand binding by conformational capture in a minimalistic riboswitch. Angew Chem Int Ed 49:6216–6219CrossRefGoogle Scholar
  9. Ebrahimi M, Rossi P, Rogers C, Harbison GS (2001) Dependence of 13C NMR chemical shifts on conformations of RNA nucleosides and nucleotides. J Magn Reson 150:1–9ADSCrossRefGoogle Scholar
  10. Fürtig B, Richter C, Wöhnert J, Schwalbe H (2003) NMR spectroscopy of RNA. ChemBioChem 4:936–962CrossRefGoogle Scholar
  11. Grosshans CA, Cech TR (1991) A hammerhead ribozyme allows synthesis of a new form of the Tetrahymena ribozyme homogenous in length with a 3′ end blocked for transesterification. Nucleic Acids Res 19:3875–3880CrossRefGoogle Scholar
  12. Grzesiek S, Bax A (1993) The importance of not saturating H2O in protein NMR: application to sensitivity enhancement and NOE measurements. J Am Chem Soc 115:12593–12594CrossRefGoogle Scholar
  13. Hermann T, Patel DJ (2000) Adaptive recognition by nucleic acid aptamers. Science 287:820–825ADSCrossRefGoogle Scholar
  14. Jiang F, Kumar RA, Jones RA, Patel DJ (1996) Structural basis of RNA folding and recognition in an AMP-RNA aptamer complex. Nature 382:183–186ADSCrossRefGoogle Scholar
  15. Keller R (2004) The computer aided resonance assignment tutorial. CANTINA Verlag, GoldauGoogle Scholar
  16. Legault P, Farmer BT, Mueller L, Pardi A (1994) Through-bond correlation of adenine protons in a 13C-labeled ribozyme. J Am Chem Soc 116:2203–2204CrossRefGoogle Scholar
  17. Marino JP, Schwalbe H, Anklin C, Bermel W, Crothers DM, Griesinger C (1994) A three-dimensional triple-resonance 1H,13C,31P experiment: sequential through-bond correlation of ribose protons and intervening phosphorus along the RNA oligonucleotide backbone. J Am Chem Soc 116:6472–6473CrossRefGoogle Scholar
  18. Milligan JF, Uhlenbeck OC (1989) Synthesis of small RNAs using T7 RNA polymerase. Methods Enzymol 180:51–62CrossRefGoogle Scholar
  19. Ohlenschläger O, Wöhnert J, Bucci E, Seitz S, Zell R, Häfner S, Ramachandran R, Görlach M (2004) The structure of the stemloop D subdomain of coxsackievirus B3 cloverleaf RNA and its interaction with the proteinase 3C. Structure 12:237–248CrossRefGoogle Scholar
  20. Ohlenschläger O, Haumann S, Ramachandran R, Görlach M (2008) Conformational signatures of 13C chemical shifts in RNA ribose. J Biomol NMR 42:139–142CrossRefGoogle Scholar
  21. Pardi A, Nikonowicz EP (1992) Simple procedure for resonance assignment of sugar protons in 13C-labeled RNAs. J Am Chem Soc 114:9202–9203CrossRefGoogle Scholar
  22. Roth A, Breaker RR (2009) The structural and functional diversity of metabolite-binding riboswitches. Annu Rev Biochem 78:305–334CrossRefGoogle Scholar
  23. Sassanfar M, Szostak JW (1993) An RNA motif that binds ATP. Nature 364:550–553ADSCrossRefGoogle Scholar
  24. Serganov A, Patel DJ (2012) Metabolite recognition principles and molecular mechanisms underlying riboswitch function. Annu Rev Biophys 41:343–370CrossRefGoogle Scholar
  25. Sklenar V, Peterson RD, Rejante MR, Feigon J (1994) Correlation of nucleotide base and sugar protons in a 15N-labeled HIV-1 RNA oligonucleotide by 1H-15N HSQC experiments. J Biomol NMR 4:117–122Google Scholar
  26. Sklenar V, Dieckmann T, Feigon J (1996) Through-bond correlation of imino and aromatic resonances in 13C-, 15N-labeled RNA via heteronuclear TOCSY. J Biomol NMR 7:83–87CrossRefGoogle Scholar
  27. Sklenar V, Dieckmann T, Butcher SE, Feigon J (1998) Optimization of triple-resonance HCN experiments for application to larger RNA oligonucleotides. J Mag Res 130:119–124ADSCrossRefGoogle Scholar
  28. Wöhnert J, Dingley AJ, Stoldt M, Görlach M, Grzesiek S, Brown LR (1999a) Direct identification of NH···N hydrogen bonds in non-canonical base pairs of RNA by NMR spectroscopy. Nucleic Acids Res 27:3104–3110CrossRefGoogle Scholar
  29. Wöhnert J, Ramachandran R, Görlach M, Brown LR (1999b) Triple-resonance experiments for correlation of H5 and exchangeable pyrimidine base hydrogens in 13C,15N-labeled RNA. J Magn Reson 139:430–432ADSCrossRefGoogle Scholar
  30. Wöhnert J, Görlach M, Schwalbe H (2003) Triple resonance experiments for the simultaneous correlation of H5/H6 and exchangeable protons of pyrimidine nucleotides in 13C,15N labeled RNA applicable to larger RNA molecules. J Biomol NMR 26:79–83CrossRefGoogle Scholar
  31. Wunderlich CH, Spitzer R, Santner T, Fauster K, Tollinger M, Kreutz C (2012) Synthesis of (6-(13)C)pyrimidine nucleotides as spin-labels for RNA dynamics. J Am Chem Soc 134:7558–7569CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Antje C. Wolter
    • 1
    • 2
  • Elke Duchardt-Ferner
    • 1
    • 2
  • Amir H. Nasiri
    • 1
    • 2
  • Katharina Hantke
    • 1
    • 2
  • Christoph H. Wunderlich
    • 3
  • Christoph Kreutz
    • 3
  • Jens Wöhnert
    • 1
    • 2
    Email author
  1. 1.Institute for Molecular BiosciencesJohann-Wolfgang-Goethe-UniversityFrankfurtGermany
  2. 2.Center for Biomolecular Magnetic Resonance (BMRZ)Johann-Wolfgang-Goethe-UniversityFrankfurtGermany
  3. 3.Institute of Organic Chemistry, Centre for Molecular Biosciences (CMBI)University of InnsbruckInnsbruckAustria

Personalised recommendations