Advertisement

Biomolecular NMR Assignments

, Volume 9, Issue 2, pp 229–233 | Cite as

Resonance assignments of the myristoylated Y28F/Y67F mutant of the Mason-Pfizer monkey virus matrix protein

  • Michal DoležalEmail author
  • Richard Hrabal
  • Tomáš Ruml
  • Michaela RumlováEmail author
Article

Abstract

The matrix protein (MA) of the Mason-Pfizer monkey virus (M-PMV) plays a key role in the transport and budding of immature retroviral particles from the host cell. Natural N-terminal myristoylation of MA is essential for the targeting of the particles to the plasma membrane and participates in the interaction of MA with membranes phospholipids. The mutation Y28F/Y67F in MA reduces budding and thus causes the accumulation of viral particles under the cytoplasmic membrane. To investigate the impact of Y28F/Y67F mutation on the structure of MA, we prepared this protein in amount and quality suitable for NMR spectroscopy. We report backbone, side-chain and myristoyl residue assignments of the Y28F/Y67F mutant of the M-PMV matrix protein, which will be used to study the interaction with membrane phospholipids and to determine the structure of the mutant matrix protein.

Keywords

Isotopic labeling Matrix protein M-PMV Myristoylation Resonance assignment Reverse labeling 

Abbreviations

CCSP

Combined chemical shift perturbation

DSS

2,2-dimethyl-2-silapentane-5-sulfonate

IPTG

Isopropyl β-D-1-thiogalactopyranoside

MA

Matrix protein

M-PMV

Mason-Pfizer monkey virus

PI(4,5)P2

Phosphatidylinositol 4,5-bisphosphate

TCEP

Tris(2-carboxyethyl)phosphine

Notes

Acknowledgments

This work was supported by Czech Science Foundation Grant P302/12/1895.

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical standards

All experiments described comply with the current laws of the Czech Republic.

References

  1. Doležal M, Zábranský A, Hrabal R et al (2013) One-step separation of myristoylated and nonmyristoylated retroviral matrix proteins. Protein Expr Purif 92:94–99. doi: 10.1016/j.pep.2013.09.003 CrossRefGoogle Scholar
  2. Kroupa T, Prchal J, Doležal M et al (2014) Cost-effective method for the preparation of uniformly labeled myristoylated proteins for NMR measurements. Protein Expr Purif 99:6–9. doi: 10.1016/j.pep.2014.03.005 CrossRefGoogle Scholar
  3. Löhr F, Hänsel R, Rogov VV, Dötsch V (2007) Improved pulse sequences for sequence specific assignment of aromatic proton resonances in proteins. J Biomol NMR 37:205–224. doi: 10.1007/s10858-006-9128-4 CrossRefGoogle Scholar
  4. Prchal J, Junkova P, Strmiskova M et al (2011) Expression and purification of myristoylated matrix protein of Mason-Pfizer monkey virus for NMR and MS measurements. Protein Expr Purif 79:122–127. doi: 10.1016/j.pep.2011.05.010 CrossRefGoogle Scholar
  5. Prchal J, Srb P, Hunter E et al (2012) The structure of myristoylated Mason-Pfizer monkey virus matrix protein and the role of phosphatidylinositol-(4,5)-bisphosphate in its membrane binding. J Mol Biol 423:427–438. doi: 10.1016/j.jmb.2012.07.021 CrossRefGoogle Scholar
  6. Saad JS, Miller J, Tai J et al (2006) Structural basis for targeting HIV-1 Gag proteins to the plasma membrane for virus assembly. Proc Natl Acad Sci USA 103:11364–11369. doi: 10.1073/pnas.0602818103 CrossRefADSGoogle Scholar
  7. Shen Y, Delaglio F, Cornilescu G, Bax A (2009) TALOS+: a hybrid method for predicting protein backbone torsion angles from NMR chemical shifts. J Biomol NMR 44:213–223. doi: 10.1007/s10858-009-9333-z CrossRefGoogle Scholar
  8. Stansell E, Tytler EM, Walter MR, Hunter E (2004) An early stage of Mason-Pfizer monkey virus budding is regulated by the hydrophobicity of the Gag matrix domain core. J Virol 78:5023–5031. doi: 10.1128/JVI.78.10.5023 CrossRefGoogle Scholar
  9. Vlach J, Lipov J, Rumlová M et al (2008) D-retrovirus morphogenetic switch driven by the targeting signal accessibility to Tctex-1 of dynein. Proc Natl Acad Sci USA 105:10565–10570. doi: 10.1073/pnas.0801765105 CrossRefADSGoogle Scholar
  10. Vranken WF, Boucher W, Stevens TJ et al (2005) The CCPN data model for NMR spectroscopy: development of a software pipeline. Proteins 59:687–696. doi: 10.1002/prot.20449 CrossRefGoogle Scholar
  11. Wishart DS, Bigam CG, Yao J et al (1995) 1H, 13C and 15N chemical shift referencing in biomolecular NMR. J Biomol NMR 6:135–140Google Scholar
  12. Yamazaki T, Forman-Kay JD, Kay LE (1993) Two-dimensional NMR experiments for correlating 13Cβ and 1Hδ/ε chemical shifts of aromatic residues in 13C-labeled proteins via scalar couplings. J Am Chem Soc 115:11054–11055. doi: 10.1021/ja00076a099

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Laboratory of NMR SpectroscopyUniversity of Chemistry and Technology, PraguePragueCzech Republic
  2. 2.Department of Biochemistry and MicrobiologyUniversity of Chemistry and Technology, PraguePragueCzech Republic
  3. 3.Institute of Organic Chemistry and Biochemistry, v.v.i., IOCB and Gilead Research CenterAcademy of Sciences of the Czech RepublicPragueCzech Republic
  4. 4.Department of BiotechnologyUniversity of Chemistry and Technology, PraguePragueCzech Republic

Personalised recommendations