Biomolecular NMR Assignments

, Volume 9, Issue 1, pp 207–210 | Cite as

1H, 13C, 15N resonance assignment of the chitin-active lytic polysaccharide monooxygenase BlLPMO10A from Bacillus licheniformis

  • Gaston Courtade
  • Simone Balzer
  • Zarah Forsberg
  • Gustav Vaaje-Kolstad
  • Vincent G. H. Eijsink
  • Finn L. Aachmann
Article

Abstract

The chitin-active 19.2 kDa lytic polysaccharide monooxygenase BlLPMO10A from Bacillus licheniformis has been isotopically labeled and recombinantly expressed. In this paper, we report the 1H, 13C, 15N resonance assignment of BlLPMO10A.

Keywords

Lytic polysaccharide monooxygenase (LPMO) AA10 Chitin Cellulose 

References

  1. Aachmann FL, Sørlie M, Skjåk-Bræk G et al (2012) NMR structure of a lytic polysaccharide monooxygenase provides insight into copper binding, protein dynamics, and substrate interactions. Proc Natl Acad Sci USA 109:18779–18784. doi:10.1073/pnas.1208822109 CrossRefADSGoogle Scholar
  2. Berg L, Lale R, Bakke I et al (2009) The expression of recombinant genes in Escherichia coli can be strongly stimulated at the transcript production level by mutating the DNA-region corresponding to the 5′-untranslated part of mRNA. Microb Biotechnol 2:379–389. doi:10.1111/j.1751-7915.2009.00107.x CrossRefGoogle Scholar
  3. Forsberg Z, Vaaje-Kolstad G, Westereng B et al (2011) Cleavage of cellulose by a CBM33 protein. Protein Sci 20:1479–1483. doi:10.1002/pro.689 CrossRefGoogle Scholar
  4. Forsberg Z, Røhr AK, Mekasha S et al (2014) Comparative study of two chitin-active and two cellulose-active AA10-type lytic polysaccharide monooxygenases. Biochemistry 53:1647–1656. doi:10.1021/bi5000433 CrossRefGoogle Scholar
  5. Goujon M, McWilliam H, Li W et al (2010) A new bioinformatics analysis tools framework at EMBL–EBI. Nucleic Acids Res 38:W695–W699. doi:10.1093/nar/gkq313 CrossRefGoogle Scholar
  6. Harris PV, Welner D, McFarland KC et al (2010) Stimulation of lignocellulosic biomass hydrolysis by proteins of glycoside hydrolase family 61: structure and function of a large, enigmatic family. Biochemistry 49:3305–3316. doi:10.1021/bi100009p CrossRefGoogle Scholar
  7. Hemsworth GR, Davies GJ, Walton PH (2013a) Recent insights into copper-containing lytic polysaccharide mono-oxygenases. Curr Opin Struct Biol 23:660–668. doi:10.1016/j.sbi.2013.05.006 CrossRefGoogle Scholar
  8. Hemsworth GR, Taylor EJ, Kim RQ et al (2013b) The copper active site of CBM33 polysaccharide oxygenases. J Am Chem Soc 135:6069–6077. doi:10.1021/ja402106e CrossRefGoogle Scholar
  9. Hemsworth GR, Henrissat B, Davies GJ, Walton PH (2014) Discovery and characterization of a new family of lytic polysaccharide monooxygenases. Nat Chem Biol 10:122–126. doi:10.1038/nchembio.1417 CrossRefGoogle Scholar
  10. Horn SJ, Vaaje-Kolstad G, Westereng B, Eijsink VG (2012) Novel enzymes for the degradation of cellulose. Biotechnol Biofuels 5:45. doi:10.1186/1754-6834-5-45 CrossRefGoogle Scholar
  11. Karkehabadi S, Hansson H, Kim S et al (2008) The first structure of a glycoside hydrolase family 61 member, Cel61B from Hypocrea jecorina, at 1.6 Å resolution. J Mol Biol 383:144–154. doi:10.1016/j.jmb.2008.08.016 CrossRefGoogle Scholar
  12. Keller R (2004) The computer aided resonance assignment tutorial, 1st edn. CANTINA Verlag, Goldau Google Scholar
  13. Kim S, Ståhlberg J, Sandgren M et al (2014) Quantum mechanical calculations suggest that lytic polysaccharide monooxygenases use a copper-oxyl, oxygen-rebound mechanism. Proc Natl Acad Sci USA 111:149–154. doi:10.1073/pnas.1316609111
  14. Levasseur A, Drula E, Lombard V et al (2013) Expansion of the enzymatic repertoire of the CAZy database to integrate auxiliary redox enzymes. Biotechnol Biofuels 6:41. doi:10.1186/1754-6834-6-41 CrossRefGoogle Scholar
  15. Li X, Beeson WT, Phillips CM et al (2012) Structural basis for substrate targeting and catalysis by fungal polysaccharide monooxygenases. Structure 20:1051–1061. doi:10.1016/j.str.2012.04.002 CrossRefGoogle Scholar
  16. McWilliam H, Li W, Uludag M et al (2013) Analysis tool web services from the EMBL-EBI. Nucleic Acids Res 41:W597–W600. doi:10.1093/nar/gkt376 CrossRefGoogle Scholar
  17. Moser F, Irwin D, Chen S, Wilson DB (2008) Regulation and characterization of Thermobifida fusca carbohydrate-binding module proteins E7 and E8. Biotechnol Bioeng 100:1066–1077. doi:10.1002/bit.21856 CrossRefGoogle Scholar
  18. Phillips CM, Beeson WT, Cate JH, Marletta MA (2011) Cellobiose dehydrogenase and a copper-dependent polysaccharide monooxygenase potentiate cellulose degradation by Neurospora crassa. ACS Chem Biol 6:1399–1406. doi:10.1021/cb200351y
  19. Quinlan RJ, Sweeney MD, Leggio LL et al (2011) Insights into the oxidative degradation of cellulose by a copper metalloenzyme that exploits biomass components. Proc Natl Acad Sci USA 108:15079–15084. doi:10.1073/pnas.1105776108 CrossRefADSGoogle Scholar
  20. Shen Y, Delaglio F, Cornilescu G, Bax A (2009) TALOS+: a hybrid method for predicting protein backbone torsion angles from NMR chemical shifts. J Biomol NMR 44:213–223. doi:10.1007/s10858-009-9333-z CrossRefGoogle Scholar
  21. Sievers F, Wilm A, Dineen D et al (2011) Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol Syst Biol. 7:539. doi:10.1038/msb.2011.75 CrossRefGoogle Scholar
  22. Sletta H, Tøndervik A, Hakvåg S et al (2007) The presence of N-terminal secretion signal sequences leads to strong stimulation of the total expression levels of three tested medically important proteins during high-cell-density cultivations of Escherichia coli. Appl Environ Microbiol 73:906–912. doi:10.1128/AEM.01804-06 CrossRefGoogle Scholar
  23. Vaaje-Kolstad G, Horn SJ, van Aalten DMF et al (2005a) The non-catalytic chitin-binding protein CBP21 from Serratia marcescens is essential for chitin degradation. J Biol Chem 280:28492–28497. doi:10.1074/jbc.M504468200 CrossRefGoogle Scholar
  24. Vaaje-Kolstad G, Houston DR, Riemen AHK et al (2005b) Crystal structure and binding properties of the Serratia marcescens chitin-binding protein CBP21. J Biol Chem 280:11313–11319. doi:10.1074/jbc.M407175200 CrossRefGoogle Scholar
  25. Vaaje-Kolstad G, Westereng B, Horn SJ et al (2010) An oxidative enzyme boosting the enzymatic conversion of recalcitrant polysaccharides. Science 330:219–222. doi:10.1126/science.1192231 (80-)CrossRefADSGoogle Scholar
  26. Vaaje-Kolstad G, Bøhle LA, Gåseidnes S et al (2012) Characterization of the chitinolytic machinery of Enterococcus faecalis V583 and high-resolution structure of its oxidative CBM33 enzyme. J Mol Biol 416:239–254. doi:10.1016/j.jmb.2011.12.033 CrossRefGoogle Scholar
  27. Wu M, Beckham GT, Larsson AM et al (2013) Crystal structure and computational characterization of the lytic polysaccharide monooxygenase GH61D from the Basidiomycota fungus Phanerochaete chrysosporium. J Biol Chem 288:12828–12839. doi:10.1074/jbc.M113.459396 CrossRefGoogle Scholar
  28. Zhang H, Neal S, Wishart DS (2003) RefDB: a database of uniformly referenced protein chemical shifts. J Biomol NMR 25:173–195CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Gaston Courtade
    • 1
  • Simone Balzer
    • 3
  • Zarah Forsberg
    • 2
  • Gustav Vaaje-Kolstad
    • 2
  • Vincent G. H. Eijsink
    • 2
  • Finn L. Aachmann
    • 1
  1. 1.Department of BiotechnologyNorwegian University of Science and TechnologyTrondheimNorway
  2. 2.Department of Chemistry, Biotechnology and Food ScienceNorwegian University of Life SciencesÅsNorway
  3. 3.Department of Molecular BiologySINTEF Materials and ChemistryTrondheimNorway

Personalised recommendations