Biomolecular NMR Assignments

, Volume 8, Issue 2, pp 409–413 | Cite as

1H, 13C and 15N resonance assignments for the full-length mammalian cytochrome b5 in a membrane environment

  • Subramanian Vivekanandan
  • Shivani Ahuja
  • Sang-Choul Im
  • Lucy Waskell
  • Ayyalusamy Ramamoorthy
Article

Abstract

Microsomal cytochrome b5 plays a key role in the oxidation of a variety of exogenous and endogenous compounds, including drugs, fatty acids, cholesterol and steroid hormones. To better understand its functional properties in a membrane mimic environment, we carried out high-resolution solution NMR studies. Here we report resonance assignments for full-length rabbit cytochrome b5 embedded in dodecylphosphocholine micelles.

Keywords

Cytochrome b5 Membrane protein Heteronuclear NMR 

References

  1. Ahuja S, Jahr N, Im SC, Vivekanandan S, Popovych N, Le Clair SV, Huang R, Soon R, Xu J, Yamamoto K, Nanga RP, Bridges A, Waskell L, Ramamoorthy A (2013) A model of the membrane-bound cytochrome b5-cytochrome P450 complex from NMR and mutagenesis data. J Biol Chem 288:22080–22095CrossRefGoogle Scholar
  2. Arnesano F, Banci L, Bertini I, Koulougliotis D, Monti A (2000) Monitoring mobility in the early steps of unfolding: the case of oxidized cytochrome b5 in the presence of 2M guanidinium chloride. Biochemistry 39:7117–7130CrossRefGoogle Scholar
  3. Banci L, Bertini I, Rosato A, Scacchieri S (2000) Solution structure of oxidized microsomal rabbit cytochrome b5: factors determining the heterogeneous binding of the heme. Eur J Biochem 267:755–766CrossRefGoogle Scholar
  4. Banci L, Bertini I, Branchini BR, Hajieva P, Spyroulias GA, Turano P (2001a) Dimethyl propionate ester heme-containing cytochrome b5: structure and stability. J Biol Inorg Chem 6:490–503CrossRefGoogle Scholar
  5. Banci L, Bertini I, Felli IC, Hajieva P, Viezzoli MS (2001b) Side chain mobility as monitored by CH–CH cross correlation: the example of cytochrome b5. J Biomol NMR 20:1–10CrossRefGoogle Scholar
  6. Clarke TA, Im SC, Bidwai A, Waskell L (2004) The role of the length and sequence of the linker domain of cytochrome b5 in stimulating cytochrome P4502B4 catalysis. J Biol Chem 279:36809–36818CrossRefGoogle Scholar
  7. Delaglio F, Grzesiek S, Vuister GW, Zhu G, Pfeifer J, Bax A (1995) NMRPIPE: a multidimensional spectral processing system based on unix pipes. J Biomol NMR 6:277–293Google Scholar
  8. Durley RCE, Mathews FS (1996) Refinement and structural analysis of bovine cytochrome b5 at 1.5 angstrom resolution. Acta Crystallogr Sect D Biol Crystallogr 52:65–76CrossRefGoogle Scholar
  9. Dürr UH, Waskell L, Ramamoorthy A (2007a) The cytochromes P450 and b5 and their reductases-Promising targets for structural studies by advanced solid-state NMR spectroscopy. Biochim Biophys Acta Biomembr 1768:3235–3259CrossRefGoogle Scholar
  10. Dürr UH, Yamamoto K, Im SC, Waskell L, Ramamoorthy A (2007b) Solid-state NMR reveals structural and dynamical properties of a membrane-anchored electron-carrier protein, cytochrome b5. J Am Chem Soc 129:6670–6671CrossRefGoogle Scholar
  11. Harris RK, Becker ED, De Menezes SMC, Goodfellow R, Granger P (2001) NMR nomenclature. Nuclear spin properties and conventions for chemical shifts—(IUPAC recommendations. Pure Appl Chem 73:1795–1818Google Scholar
  12. Kneller DG, Kuntz ID (1993) UCSF Sparky—an NMR display, annotation and assignment tool. J Cell Biochem 53:254Google Scholar
  13. Kominami S, Ogawa N, Morimune R, Huang DY, Takemori S (1992) The role of cytochrome b5 in adrenal microsomal steroidogenesis. J Steroid Biochem 42:57–64CrossRefGoogle Scholar
  14. Lederer F (1994) The cytochrome b5-fold: an adaptable module. Biochimie 76:674–692CrossRefGoogle Scholar
  15. Mulrooney SB, Waskell L (2000) High-level expression in Escherichia coli and purification of the membrane-bound form of cytochrome b5. Protein Expr Purif 19:173–178CrossRefGoogle Scholar
  16. Nguyen KT, Soong R, Im S-C, Waskell L, Ramamoorthy A, Chen Z (2010) Probing the spontaneous membrane insertion of a tail-anchored membrane protein by sum frequency generation. J Am Chem Soc 132:15112–15115CrossRefGoogle Scholar
  17. Nunez M, Guittet E, Pompon D, Van Heijenoort C, Truan G (2010) NMR structure note: oxidized microsomal human cytochrome b5. J Biomol NMR 47:289–295CrossRefGoogle Scholar
  18. Pervushin K, Riek R, Wider G, Wüthrich K (1997) Attenuated T-2 relaxation by mutual cancellation of dipole–dipole coupling and chemical shift anisotropy indicates an avenue to NMR structures of very large biological macromolecules in solution. Proc Natl Acad Sci USA 94:12366–12371ADSCrossRefGoogle Scholar
  19. Sattler M, Schleucher J, Griesinger C (1999) Heteronuclear multidimensional NMR experiments for the structure determination of proteins in solution employing pulsed field gradients. Prog Nucl Magn Reson Spectrosc 34:93–158CrossRefGoogle Scholar
  20. Schenkman JB, Jansson I (2003) The many roles of cytochrome b5. Pharmacol Ther 97:139–152CrossRefGoogle Scholar
  21. Soong R, Smith PE, Xu J, Yamamoto K, Im SC, Waskell L, Ramamoorthy A (2010) Proton-evolved local-field solid-state NMR studies of cytochrome b5 embedded in bicelles, revealing both structural and dynamical information. J Am Chem Soc 132:5779–5788CrossRefGoogle Scholar
  22. Takematsu H, Kawano T, Koyama S, Kozutsumi Y, Suzuki A, Kawasaki T (1994) Reaction mechanism underlying CMP-N-acetylneuraminic acid hydroxylation in mouse-liver—Formation of a ternary complex of cytochrome b5, CMP-N-acetylneuraminic acid, and a hydroxylation enzyme. J Biochem 115:381–386Google Scholar
  23. Vergeres G, Waskell L (1995) Cytochrome b5, its functions, structure and membrane topology. Biochimie 77:604–620CrossRefGoogle Scholar
  24. Xu J, Dürr UHN, Im SC, Gan Z, Waskell L, Ramamoorthy A (2008) Bicelle-enabled structural studies on membrane protein cytochrome b5 by solid-state MAS NMR spectroscopy. Angew Chem Int Ed 47:7864–7867CrossRefGoogle Scholar
  25. Xu J, Soong R, Im SC, Waskell L, Ramamoorthy A (2010) INEPT-based separated-local-field NMR spectroscopy: a unique approach to elucidate side-chain dynamics of membrane-associated proteins. J Am Chem Soc 132:9944–9947CrossRefGoogle Scholar
  26. Zhang Q, Cao CY, Wang ZQ, Wang YH, Wu HM, Huang ZX (2004) The comparative study on the solution structures of the oxidized bovine microsomal cytochrome b5 and mutant V45H. Protein Sci 13:2161–2169CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Subramanian Vivekanandan
    • 1
  • Shivani Ahuja
    • 1
  • Sang-Choul Im
    • 2
    • 3
  • Lucy Waskell
    • 2
    • 3
  • Ayyalusamy Ramamoorthy
    • 1
  1. 1.Department of Chemistry and BiophysicsUniversity of MichiganAnn ArborUSA
  2. 2.Department of AnesthesiologyUniversity of MichiganAnn ArborUSA
  3. 3.VA Medical CenterAnn ArborUSA

Personalised recommendations