Biomolecular NMR Assignments

, Volume 8, Issue 2, pp 357–360 | Cite as

1H, 15N and 13C chemical shift assignments for the winged helix domains of two archeal MCM C-termini

  • Christoph Wiedemann
  • Oliver Ohlenschläger
  • Barbara Medagli
  • Silvia Onesti
  • Matthias Görlach
Article

Abstract

High-fidelity replication guarantees the stable inheritance of genetic information stored in the DNA of living organisms. The minichromosome maintenance (MCM) complex functions as replicative DNA-unwinding helicase and has been identified as one key player in the replication process of archea and eukarya. Despite the availability of considerable structural information on archeal MCMs, such information was missing for their C-terminal domain. In order to obtain more detailed structural information, we assigned the NMR chemical shifts for backbone and side chain nuclei for the MCM C-terminal winged helix domains of the archeal species Methanothermobacter thermautrophicus and Sulfolobus solfataricus.

Keywords

MCM Replication Replicative helicase AAA+ ATPase Archea Winged helix NMR 

References

  1. Barry ER, McGeoch AT, Kelman Z, Bell SD (2007) Archaeal MCM has separable processivity, substrate choice and helicase domains. Nucleic Acids Res 35(3):988–998. doi:10.1093/nar/gkl1117 CrossRefGoogle Scholar
  2. Brewster AS, Chen XS (2010) Insights into the MCM functional mechanism: lessons learned from the archaeal MCM complex. Crit Rev Biochem Mol Biol 45(3):243–256. doi:10.3109/10409238.2010.484836 CrossRefGoogle Scholar
  3. Costa A, van Duinen G, Medagli B, Chong J, Sakakibara N, Kelman Z, Nair SK, Patwardhan A, Onesti S (2008) Cryo-electron microscopy reveals a novel DNA-binding site on the MCM helicase. EMBO J 27(16):2250–2258. doi:10.1038/emboj.2008.135 CrossRefGoogle Scholar
  4. Gajiwala KS, Burley SK (2000) Winged helix proteins. Curr Opin Struct Biol 10(1):110–116CrossRefGoogle Scholar
  5. Harami GM, Gyimesi M, Kovcs M (2013) From keys to bulldozers: expanding roles for winged helix domains in nucleic-acid-binding proteins. Trends Biochem Sci. doi:10.1016/j.tibs.2013.04.006
  6. Luca S, Filippov DV, van Boom JH, Oschkinat H, de Groot HJ, Baldus M (2001) Secondary chemical shifts in immobilized peptides and proteins: a qualitative basis for structure refinement under magic angle spinning. J Biomol NMR 20(4):325–331CrossRefGoogle Scholar
  7. Slaymaker IM, Chen XS (2012) MCM structure and mechanics: what we have learned from archaeal MCM. Subcell Biochem 62:89–111CrossRefGoogle Scholar
  8. Slaymaker IM, Fu Y, Toso DB, Ranatunga N, Brewster A, Forsburg SL, Zhou ZH, Chen XS (2013) Mini-chromosome maintenance complexes form a filament to remodel DNA structure and topology. Nucleic Acids Res 41(5):3446–3456. doi:10.1093/nar/gkt022 CrossRefGoogle Scholar
  9. Spera S, Bax A (1991) Empirical correlation between protein backbone conformation and Cα and Cβ 13C nuclear magnetic resonance chemical shifts. J Am Chem Soc 113(14):5490–5492CrossRefGoogle Scholar
  10. Vranken WF, Boucher W, Stevens TJ, Fogh RH, Pajon A, Llinas M, Ulrich EL, Markley JL, Ionides J, Laue ED (2005) The CCPN data model for NMR spectroscopy: development of a software pipeline. Proteins 59(4):687–696. doi:10.1002/prot.20449 CrossRefGoogle Scholar
  11. Yamazaki T, Forman Kay JD, Kay LE (1993) Two-dimensional NMR experiments for correlating 13Cβ and \(^{1}\hbox{H}\delta/\epsilon\) chemical shifts of aromatic residues in 13C-labeled proteins via scalar couplings. J Am Chem Soc 115(23):11054–11055Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Christoph Wiedemann
    • 1
  • Oliver Ohlenschläger
    • 1
  • Barbara Medagli
    • 2
  • Silvia Onesti
    • 2
  • Matthias Görlach
    • 1
  1. 1.Biomolecular NMR SpectroscopyLeibniz Institute for Age Research—Fritz Lipman InstituteJenaGermany
  2. 2.Sincrotrone Trieste S.C.p.A.BasovizzaItaly

Personalised recommendations