Biomolecular NMR Assignments

, Volume 8, Issue 2, pp 335–338 | Cite as

Backbone resonance assignments of the 42 kDa enzyme arginine kinase in the transition state analogue form

  • Omar Davulcu
  • Xiaogang Niu
  • Lei Brüschweiler-Li
  • Rafael Brüschweiler
  • Jack J. Skalicky
  • Michael S. Chapman
Article

Abstract

Nearly complete backbone resonance assignments for the 357 residue, 42 kDa enzyme arginine kinase in a transition state analogue (TSA) complex are presented. The TSA is a quaternary complex of arginine kinase, MgADP, arginine, and nitrate. About 93 % (320 of 344) of the non-proline backbone amides were assigned using an enzyme enriched with 2H, 13C, and 15N in combination with three enzyme samples prepared with a single 15N-labeled amino acid (K, L, and R). The amide assignments will provide the foundation for investigating the dynamics of arginine kinase when in a TSA complex.

Keywords

Arginine kinase Phosphagen kinase NMR spectroscopy Resonance assignment Enzyme dynamics Transition state analogue 

Notes

Acknowledgments

This work was supported by the National Institutes of Health (GM77643).

References

  1. Davulcu O, Clark SA, Chapman MS, Skalicky JJ (2005) Main chain (1)H, (13)C, and (15)N resonance assignments of the 42-kDa enzyme arginine kinase. J Biomol NMR 32(2):178CrossRefGoogle Scholar
  2. Davulcu O, Flynn PF, Chapman MS, Skalicky JJ (2009) Intrinsic domain and loop dynamics commensurate with catalytic turnover in an induced-fit enzyme. Structure 17(10):1356–1367CrossRefGoogle Scholar
  3. Davulcu O, Skalicky JJ, Chapman MS (2011) Rate-limiting domain and loop motions in arginine kinase. Biochemistry 50(19):4011–4018CrossRefGoogle Scholar
  4. Ellington WR (2001) Evolution and physiological roles of phosphagen systems. Annu Rev Physiol 63:289–325CrossRefGoogle Scholar
  5. Goddard TD, Kneller DG (2004) SPARKY 3. University of California, San FranciscoGoogle Scholar
  6. Markley JL, Bax A, Arata Y, Hilbers CW, Kaptein R, Sykes BD, Wright PE, Wuthrich K (1998) Recommendations for the presentation of NMR structures of proteins and nucleic acids. IUPAC-IUBMB-IUPAB inter-union task group on the standardization of data bases of protein and nucleic acid structures determined by NMR spectroscopy. J Biomol NMR 12(1):1–23CrossRefGoogle Scholar
  7. Niu X, Bruschweiler-Li L, Davulcu O, Skalicky JJ, Bruschweiler R, Chapman MS (2011) Arginine kinase: joint crystallographic and NMR RDC analyses link substrate-associated motions to intrinsic flexibility. J Mol Biol 405(2):479–496CrossRefGoogle Scholar
  8. Pruett PS, Azzi A, Clark SA, Yousef M, Gattis JL, Somasundaram T, Ellington WR, Chapman MS (2003) The putative catalytic bases have, at most, an accessory role in the mechanism of arginine kinase. J Biol Chem 29:26952–26957CrossRefGoogle Scholar
  9. Wishart D, Sykes BD (1994) The 13C chemical shift index: a simple method for the assignment of protein secondary structure using 13C chemical-shift data. J Biomolecular NMR 4:171–180Google Scholar
  10. Yousef MS, Clark SA, Pruett PK, Somasundaram T, Ellington WR, Chapman MS (2003) Induced fit in guanidino kinases-comparison of substrate-free and transition state analog structures of arginine kinase. Protein Sci 12(1):103–111CrossRefGoogle Scholar
  11. Zhou G, Somasundaram T, Blanc E, Parthasarathy G, Ellington WR, Chapman MS (1998) Transition state structure of arginine kinase: implications for catalysis of bimolecular reactions. Proc Natl Acad Sci USA 95(15):8449–8454ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Omar Davulcu
    • 1
  • Xiaogang Niu
    • 2
  • Lei Brüschweiler-Li
    • 2
  • Rafael Brüschweiler
    • 2
  • Jack J. Skalicky
    • 3
  • Michael S. Chapman
    • 1
  1. 1.Department of Biochemistry and Molecular BiologyOregon Health and Science UniversityPortlandUSA
  2. 2.Department of Chemistry and BiochemistryFlorida State UniversityTallahasseeUSA
  3. 3.Department of BiochemistryUniversity of UtahSalt Lake CityUSA

Personalised recommendations