Biomolecular NMR Assignments

, Volume 7, Issue 2, pp 187–191 | Cite as

1H, 13C and 15N chemical shift assignments of unliganded Bcl-xL and its complex with a photoresponsive Bak-derived peptide

  • Piotr Wysoczanski
  • Robert J. Mart
  • E. Joel Loveridge
  • Christopher Williams
  • Sara B.-M. Whittaker
  • Matthew P. Crump
  • Rudolf K. AllemannEmail author


Here we report the 1H, 13C and 15N resonance assignments of free Bcl-xL and of Bcl-xL in complex with an azobenzene-modified peptide derived from the BH3 domain of the pro-apoptotic Bak. The spectra suggest predominantly folded proteins; chemical shift difference analysis provides a detailed view of the reorganization occurring on peptide binding.


Bcl-xL Bcl-2 family Photonano-switches Azobenzene 



Bcl-2 homologues antagonist killer


B cell lymphoma protein


B cell lymphoma extra large protein


Bcl-2 homology helix



This work was supported by the UK Engineering and Physical Sciences Research Council (EPSRC) through Basic Technology Grant EP/F040954 (RKA) and grant EP/F013515 (MPC), the Wellcome Trust (WT082352MA) and Cardiff University (studentship to Piotr Wysoczański).


  1. Chin JW, Schepartz A (2001) Design and evolution of a miniature Bcl-2 binding protein. Angewandte Chemie (Int Ed) 40(20):3806–3809CrossRefGoogle Scholar
  2. Delaglio F, Grzesiek S et al (1995) NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J Biomol NMR 6(3):277–293CrossRefGoogle Scholar
  3. Fogh RH, Boucher W et al (2004) A framework for scientific data modeling and automated software development. Bioinformatics 21:1678–1684CrossRefGoogle Scholar
  4. Kneissl S, Loveridge EJ et al (2008) Photocontrollable peptide-based switches target the anti-apoptotic protein Bcl-xL. ChemBioChem 9(18):3046–3054CrossRefGoogle Scholar
  5. Lee EF, Czabotar PE et al (2009) Conformational changes in Bcl-2 pro-survival proteins determine their capacity to bind ligands. J Biol Chem 284(44):30508–30517CrossRefGoogle Scholar
  6. Lee EF, Dewson G et al (2011) Crystal structure of a Bcl-W domain-swapped dimer: implications for the function of Bcl-2 family proteins. Structure 19(10):1467–1476CrossRefGoogle Scholar
  7. O’Neill JW, Manion MK et al (2006) Bcl-xL dimerization by three-dimensional domain swapping. J Mol Biol 356(2):367–381CrossRefGoogle Scholar
  8. Peterson RD, Theimer CA et al (2004) New applications of 2D filtered/edited NOESY for assignment and structure elucidation of RNA and RNA-protein complexes. J Biomol NMR 28(1):59–67CrossRefGoogle Scholar
  9. Sattler M, Liang H et al (1997) Structure of Bcl-xL–Bak peptide complex: recognition between regulators of apoptosis. Science 275(5302):983–986CrossRefGoogle Scholar
  10. Schumann FH, Riepl H et al (2007) Combined chemical shift changes and amino acid specific chemical shift mapping of protein–protein interactions. J Biomol NMR 39(4):275–289CrossRefGoogle Scholar
  11. Wysoczański P, Mart RJ et al (2012) NMR solution structure of a photo-switchable apoptosis activating Bak peptide bound to Bcl-xL. J Am Chem Soc 134(18):7644–7647Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Piotr Wysoczanski
    • 1
  • Robert J. Mart
    • 1
  • E. Joel Loveridge
    • 1
    • 4
  • Christopher Williams
    • 2
  • Sara B.-M. Whittaker
    • 3
  • Matthew P. Crump
    • 2
  • Rudolf K. Allemann
    • 1
    Email author
  1. 1.School of ChemistryCardiff UniversityCardiffUK
  2. 2.School of ChemistryUniversity of BristolBristolUK
  3. 3.School of Cancer StudiesUniversity of BirminghamBirminghamUK
  4. 4.Institute of Life SciencesSwansea UniversitySwanseaUK

Personalised recommendations