Advertisement

Biomolecular NMR Assignments

, Volume 7, Issue 1, pp 61–64 | Cite as

Aliphatic 1H, 13C and 15N chemical shift assignments of dihydrofolate reductase from the psychropiezophile Moritella profunda in complex with NADP+ and folate

  • E. Joel Loveridge
  • Stella M. Matthews
  • Christopher Williams
  • Sara B.-M. Whittaker
  • Ulrich L. Günther
  • Rhiannon M. Evans
  • William M. Dawson
  • Matthew P. Crump
  • Rudolf K. AllemannEmail author
Article

Abstract

Dihydrofolate reductase from the deep-sea bacterium Moritella profunda (MpDHFR) has been 13C/15N isotopically labelled and purified. Here, we report the aliphatic 1H, 13C and 15N resonance assignments of MpDHFR in complex with NADP+ and folate. The spectra of MpDHFR suggest considerably greater conformational heterogeneity than is seen in the closely related DHFR from Escherichia coli.

Keywords

Dihydrofolate reductase Moritella profunda Conformational heterogeneity 

Abbreviations

DHFR

Dihydrofolate reductase

EcDHFR

DHFR from Escherichia coli

MpDHFR

DHFR from Moritella profunda

Notes

Acknowledgments

This work was supported by the UK’s Biotechnology and Biological Sciences Research Council (BBSRC) through grant BB/E008380/1 and Cardiff University. We thank the Wellcome Trust for open access to the Varian INOVA 900 MHz spectrometer at HWB-NMR, University of Birmingham, through Biomedical Resources grant 083796/Z/07/Z. We also thank the Wellcome Trust (WT082352MA) and the Engineering and Physical Sciences Research Council (EPSRC) (EP/F013515) for the Varian VNMRS 600 MHz cryo-probe at the University of Bristol.

Supplementary material

12104_2012_9378_MOESM1_ESM.doc (1.9 mb)
Supplementary material 1 (DOC 1993 kb)

References

  1. Bhabha G, Tuttle L, Martinez-Yamout MA, Wright PE (2011) Identification of endogenous ligands bound to bacterially expressed human and E. coli dihydrofolate reductase by 2D NMR. FEBS Lett 585(22):3528–3532CrossRefGoogle Scholar
  2. Delaglio F, Grzesiek S, Vuister GW, Zhu G, Pfeifer J, Bax A (1995) NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J Biomol NMR 6(3):277–293CrossRefGoogle Scholar
  3. Evans RM, Behiry EM, Tey L-H, Guo J, Loveridge EJ, Allemann RK (2010) Catalysis by dihydrofolate reductase from the psychropiezophile Moritella profunda. ChemBioChem 11(14):2010–2017CrossRefGoogle Scholar
  4. Hata K, Kono R, Fujisawa M, Kitahara R, Kamatari YO, Akasaka K, Xu Y (2004) High pressure NMR study of dihydrofolate reductase from a deep-sea bacterium. Cell Mol Biol 50(4):311–316Google Scholar
  5. Hay S, Evans RM, Levy C, Loveridge EJ, Wang X, Leys D, Allemann RK, Scrutton NS (2009) Are the catalytic properties of enzymes from piezophilic organisms pressure adapted? ChemBioChem 10(14):2348–2353CrossRefGoogle Scholar
  6. Loveridge EJ, Tey L-H, Behiry EM, Dawson WM, Evans RM, Whittaker SB-M, Günther UL, Williams C, Crump MP, Allemann RK (2011) The role of large-scale motions in catalysis by dihydrofolate reductase. J Am Chem Soc 133(50):20561–20570CrossRefGoogle Scholar
  7. Osborne MJ, Venkitakrishnan RP, Dyson HJ, Wright PE (2003) Diagnostic chemical shift markers for loop conformation and substrate and cofactor binding in dihydrofolate reductase complexes. Prot Sci 12(10):2230–2238CrossRefGoogle Scholar
  8. Sawaya MR, Kraut J (1997) Loop and subdomain movements in the mechanism of Escherichia coli dihydrofolate reductase: crystallographic evidence. Biochemistry 36(3):586–603CrossRefGoogle Scholar
  9. Vranken WF, Boucher W, Stevens TJ, Fogh RH, Pajon A, Llinas M, Ulrich EL, Markley JL, Ionides J, Laue ED (2005) The CCPN data model for NMR spectroscopy: development of a software pipeline. Proteins 59(4):687–696CrossRefGoogle Scholar
  10. Xu Y, Nogi Y, Kato C, Liang Z, Rüger HJ, De Kegel D, Glansdorff N (2003a) Moritella profunda sp. nov. and Moritella abyssi sp. nov., two psychropiezophilic organisms isolated from deep Atlantic sediments. Int J Syst Evol Microbiol 53(2):533–538CrossRefGoogle Scholar
  11. Xu Y, Feller G, Gerday C, Glansdorff N (2003b) Moritella Cold-Active Dihydrofolate Reductase: are There Natural Limits to Optimization of Catalytic Efficiency at Low Temperature? J Bacteriol 185(18):5519–5526CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • E. Joel Loveridge
    • 1
    • 4
  • Stella M. Matthews
    • 1
  • Christopher Williams
    • 2
  • Sara B.-M. Whittaker
    • 3
  • Ulrich L. Günther
    • 3
  • Rhiannon M. Evans
    • 1
  • William M. Dawson
    • 1
  • Matthew P. Crump
    • 2
  • Rudolf K. Allemann
    • 1
    Email author
  1. 1.School of ChemistryCardiff UniversityCardiffUK
  2. 2.School of ChemistryUniversity of BristolBristolUK
  3. 3.School of Cancer StudiesUniversity of BirminghamBirminghamUK
  4. 4.Institute of Life SciencesSwansea UniversitySwanseaUK

Personalised recommendations