Biomolecular NMR Assignments

, Volume 7, Issue 1, pp 57–59

Backbone and sidechain 1H, 15N and 13C assignments of Tyrosine Phosphatase related to Biofilm formation A (TpbA) of Pseudomonas aeruginosa



The backbone and side chain resonance assignments of the Tyrosine Phosphatase related to Biofilm formation A (TpbA) of Pseudomonas aeruginosa have been determined based on triple-resonance experiments using uniformly [13C,15N]-labeled protein. This assignment is the first step towards the determination of the 3-dimensional structure of TpbA.


TpbA Biofilm Phosphatase NMR 


  1. Davies JC (2002) Pseudomonas aeruginosa in cystic fibrosis: pathogenesis and persistence. Pediatr Respir Rev 3(2):128–134CrossRefGoogle Scholar
  2. Donlan RM (2002) Biofilms: microbial life on surfaces. Emerg Infect Dis 8(9):881–890CrossRefGoogle Scholar
  3. Karatan E, Watnick P (2009) Signals, regulatory networks, and materials that build and break bacterial biofilms. Microbiol Mol Biol Rev 73:310–347CrossRefGoogle Scholar
  4. Lee VT, Matewish JM, Kessler JL, Hyodo M, Hayakawa Y, Lory S (2007) A cyclic-di-GMP receptor required for bacterial exopolysaccharide production. Mol Microbiol 65:1474–1484CrossRefGoogle Scholar
  5. Marsh JA, Singh VK, Jia Z, Forman-Kay JD (2006) Sensitivity of secondary structure propensities to sequence differences between alpha- and gamma-synuclein: implications for fibrillation. Protein Sci 15(12):2795–2804CrossRefGoogle Scholar
  6. Messens J, Collet JF (2006) Pathways of disulfide bond formation in Escherichia coli. Int J Biochem Cell Biol 38:1050–1062CrossRefGoogle Scholar
  7. Pu A, Wood TK (2010) Tyrosine phosphatase TpbA controls rugose colony formation in Pseudomonas aeruginosa by dephosphorylating diguanylate cyclase TpbB. Biochem Biophys Res Commun 402(2):351–355CrossRefGoogle Scholar
  8. Ross P, Mayer R, Weinhouse H, Amikam D, Huggirat Y, Benziman M, de Vroom E, Fidder A, de Paus P, Sliedregt LA et al (1990) The cyclic diguanylic acid regulatory system of cellulose synthesis in Acetobacter xylinum. Chemical synthesis and biological activity of cyclic nucleotide dimer, trimer, and phosphothioate derivatives. J Biol Chem 265:18933–18943Google Scholar
  9. Ryder C, Byrd M, Wozniak DJ (2007) Role of polysaccharides in Pseudomonas aeruginosa biofilm development. Curr Opin Microbiol 10:644–648CrossRefGoogle Scholar
  10. Ueda A, Wood TK (2009) Connecting quorum sensing, c-di-GMP, pel polysaccharide, and biofilm formation in Pseudomonas aeruginosa through tyrosine phosphatase TpbA (PA3885). PLoS Pathog 5:21000483CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.Department of Molecular Biology, Cell Biology and BiochemistryBrown UniversityProvidenceUSA
  2. 2.Department of Molecular Pharmacology, Physiology and BiotechnologyBrown UniversityProvidenceUSA
  3. 3.Departments of Chemical Engineering and Biochemistry and Molecular BiologyPennsylvania State UniversityUniversity ParkUSA

Personalised recommendations