Advertisement

Biomolecular NMR Assignments

, Volume 6, Issue 2, pp 127–129 | Cite as

1H, 13C, and 15N backbone and side-chain chemical shift assignments for the 31 kDa human galectin-7 (p53-induced gene 1) homodimer, a pro-apoptotic lectin

  • Irina V. Nesmelova
  • Manuel Álvaro Berbís
  • Michelle C. Miller
  • F. Javier Cañada
  • Sabine André
  • Jesús Jiménez-Barbero
  • Hans-Joachim Gabius
  • Kevin H. MayoEmail author
Article

Abstract

Galectins are multifunctional proteins with carbohydrate/protein-binding properties and distinct expression profiles. Homodimeric galectin-7 (p53-induced gene 1) is a potent pro-apoptotic effector with clinical relevance. Here, we report 1H, 13C, and 15N chemical shift assignments for human galectin-7 dimer as determined by using heteronuclear, triple resonance NMR spectroscopy.

Keywords

Apoptosis Galectin Glycan Lectin Proliferation 

Notes

Acknowledgments

This work was made possible by a research grant from the National Cancer Institute (CA-096090) to KHM. NMR instrumentation was provided with funds from the National Science Foundation (BIR-961477), the University of Minnesota Medical School, and the Minnesota Medical Foundation.

References

  1. Ahmad N, Gabius H-J, Kaltner H, André S, Kuwabara I, Liu F-T, Oscarson S, Norberg T, Brewer CF (2002) Thermodynamic binding studies of cell surface carbohydrate epitopes to galectins-1, -3, and -7: evidence for differential binding specificities. Can J Chem 80:1096–1104CrossRefGoogle Scholar
  2. André S, Pieters RJ, Vrasidas I, Kaltner H, Kuwabara I, Liu F-T, Liskamp RM, Gabius H-J (2001) Wedgelike glycodendrimers as inhibitors of binding of mammalian galectins to glycoproteins, lactose maxiclusters, and cell surface glycoconjugates. Chem Bio Chem 2:822–830Google Scholar
  3. André S, Kaltner H, Furuike T, Nishimura S, Gabius H-J (2004) Persubstituted cyclodextrin-based glycoclusters as inhibitors of protein-carbohydrate recognition using purified plant and mammalian lectins and wild-type and lectin-gene-transfected tumor cells as targets. Bioconjug Chem 15:87–98CrossRefGoogle Scholar
  4. Čada Z, Chovanec M, Smetana K, Betka J, Lacina L, Plzák J, Kodet R, Stork J, Lensch M, Kaltner H, André S, Gabius H-J (2009) Galectin-7: will the lectin’s activity establish clinical correlations in head and neck squamous cell and basal cell carcinomas? Histol Histopathol 24:41–48Google Scholar
  5. Delaglio F, Grzesiek S, Vuister GW, Zhu G, Pfeifer J, Bax A (1995) Nmrpipe—a multidimensional spectral processing system based on unix pipes. J Biomol NMR 6:277–293CrossRefGoogle Scholar
  6. Gabius H-J, André S, Jiménez-Barbero J, Romero A, Solís D (2011) From lectin structure to functional glycomics: principles of the sugar code. Trends Biochem Sci 36:298–313CrossRefGoogle Scholar
  7. Keller RLJ (2004). The computer aided resonance assignment tutorial. (Cantina Verlag)Google Scholar
  8. Klyosov AA, Witczak ZJ, Platt D (eds) (2008) Galectins. Wiley, HobokenGoogle Scholar
  9. Kopitz J, André S, von Reitzenstein C, Versluis K, Kaltner H, Pieters RJ, Wasano K, Kuwabara I, Liu F-T, Cantz M, Heck AJ, Gabius H-J (2003) Homodimeric galectin-7 (p53-induced gene 1) is a negative growth regulator for human neuroblastoma cells. Oncogene 22:6277–6288CrossRefGoogle Scholar
  10. Leonidas DD, Vatzaki EH, Vorum H, Celis JE, Madsen P, Acharya KR (1998) Structural basis for the recognition of carbohydrates by human galectin-7. Biochemistry 37:13930–13940CrossRefGoogle Scholar
  11. Morris S, Ahmad N, André S, Kaltner H, Gabius H-J, Brenowitz M, Brewer F (2004) Quaternary solution structures of galectins-1, -3, and -7. Glycobiology 14:293–300CrossRefGoogle Scholar
  12. Muhandiram DR, Kay LE (1994) Gradient-enhanced triple-resonance 3-dimensional NMR experiments with improved Sensitivity. J Magn Reson Ser B 103:203–216CrossRefGoogle Scholar
  13. Nesmelova IV, Pang M, Baum LG, Mayo KH (2008) 1H, 13C, and 15N backbone and side-chain chemical shift assignments for the 29 kDa human galectin-1 protein dimer. Biomol NMR Assign 2:203–205CrossRefGoogle Scholar
  14. Polyak K, Xia Y, Zweier JL, Kinzler KW, Vogelstein B (1997) A model for p53-induced apoptosis. Nature 389:300–355ADSCrossRefGoogle Scholar
  15. Remmelink M, de Leval L, Decaestecker C, Duray A, Crompot E, Sirtaine N, André S, Kaltner H, Leroy X, Gabius H-J, Saussez S (2011) Quantitative immunohistochemical fingerprinting of adhesion/growth-regulatory galectins in salivary gland tumours: divergent profiles with diagnostic potential. Histopathology 58:543–556CrossRefGoogle Scholar
  16. Saussez S, Cucu DR, Decaestecker C, Chevalier D, Kaltner H, André S, Wacreniez A, Toubeau G, Camby I, Gabius H-J, Kiss R (2006) Galectin 7 (p53-induced gene 1): a new prognostic predictor of recurrence and survival in stage IV hypopharyngeal cancer. Ann Surg Oncol 13:999–1009CrossRefGoogle Scholar
  17. Villalobo A, Nogales-González A, Gabius H-J (2006) A guide to signalling pathways connecting protein-carbohydrate interactions with the emerging versatile effector functionality of mammalian lectins. Trends Glycosci Glycotechnol 18:1–37CrossRefGoogle Scholar
  18. Villeneuve C, Baricault L, Canelle L, Barboule N, Racca C, Monsarrat B, Magnaldo T, Larminat F (2011) Mitochondrial proteomic approach reveals galectin-7 as a novel BCL-2 binding protein in human cells. Mol Biol Cell 22:999–1013CrossRefGoogle Scholar
  19. Wishart DS, Sykes BD (1994) The 13C chemical-shift index: a simple method for the identification of protein secondary structure using 13C chemical-shift data. J Biomol NMR 4:171–180CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Irina V. Nesmelova
    • 1
    • 2
  • Manuel Álvaro Berbís
    • 3
  • Michelle C. Miller
    • 1
  • F. Javier Cañada
    • 3
  • Sabine André
    • 4
  • Jesús Jiménez-Barbero
    • 3
  • Hans-Joachim Gabius
    • 4
  • Kevin H. Mayo
    • 1
    Email author
  1. 1.Department of Biochemistry, Molecular Biology & BiophysicsUniversity of MinnesotaMinneapolisUSA
  2. 2.Department of Physics and Optical ScienceUniversity of North CarolinaCharlotteUSA
  3. 3.Chemical and Physical Biology DepartmentCentro de Investigaciones Biológicas, CSICMadridSpain
  4. 4.Faculty of Veterinary Medicine, Institute of Physiological ChemistryLudwig-Maximillians-UniversityMunichGermany

Personalised recommendations