Biomolecular NMR Assignments

, Volume 6, Issue 1, pp 75–77 | Cite as

1H, 13C, 15N and 31P chemical shift assignments of a human Xist RNA A-repeat tetraloop hairpin essential for X-chromosome inactivation

Article

Abstract

Initiation of X-chromosome inactivation in female mammals depends on the non-coding RNA Xist. We have solved the NMR structure of a 14-nucleotide hairpin with a novel AUCG tetraloop fold from a Xist A-repeat that is essential for silencing. The 1H, 13C, 15N and 31P chemical shift assignments are reported.

Keywords

NMR assignment Non-coding RNA RNA hairpin RNA tetraloop Xist RNA A-repeats X-inactivation 

Notes

Acknowledgments

We thank Bernd Simon for help with NMR experiments and Frank Nelissen, Katia Zanier and Alexander Gasch for help with RNA sample preparation. We acknowledge the Bayerisches NMR Zentrum (BNMRZ) in Garching, the Biomolecular NMR Centre in Frankfurt and Wolfgang Bermel (Bruker, Karlsruhe) for spectrometer time. M.D. acknowledges support by an “E-STAR” Marie Curie Host fellowship for Early Stage Research Training funded by the EC’s FP6, contract MEST-CT-2004-504640. This work was supported by the EU STREP FSG-V-RNA, contract LSHG-CT-2004-503455 and the DFG-funded Cluster of Excellence “Center for integrated Protein Science, Munich” (CiPS-M). Initial work was supported by the EMBL Heidelberg.

Supplementary material

12104_2011_9328_MOESM1_ESM.pdf (277 kb)
Supplementary material 1 (PDF 277 kb)

References

  1. Delaglio F, Grzesiek S, Vuister GW, Zhu G, Pfeifer J, Bax A (1995) NMRpipe—a multidimensional spectral processing system based on Unix pipes. J Biomol NMR 6(3):277–293CrossRefGoogle Scholar
  2. Dingley AJ, Grzesiek S (1998) Direct observation of hydrogen bonds in nucleic acid base pairs by internucleotide 2JNN couplings. J Am Chem Soc 120(33):8293–8297CrossRefGoogle Scholar
  3. Duszczyk MM, Zanier K, Sattler M (2008) A NMR strategy to unambiguously distinguish nucleic acid hairpin and duplex conformations applied to a Xist RNA A-repeat. Nucleic Acids Res 36(22):7068–7077CrossRefGoogle Scholar
  4. Fürtig B, Richter C, Wöhnert J, Schwalbe H (2003) NMR Spectroscopy of RNA. ChemBioChem 4(10):936–962CrossRefGoogle Scholar
  5. Hennig M, Williamson JR (2000) Detection of N-HN hydrogen bonding in RNA via scalar couplings in the absence of observable imino proton resonances. Nucleic Acids Res 28(7):1585–1593CrossRefGoogle Scholar
  6. Johnson BA, Blevins RA (1994) NMRView—a computer program for the visualization and analysis of NMR data. J Biomol NMR 4(5):603–614CrossRefGoogle Scholar
  7. Penny GD, Kay GF, Sheardown SA, Rastan S, Brockdorff N (1996) Requirement for Xist in X-chromosome inactivation. Nature 379(6561):131–137ADSCrossRefGoogle Scholar
  8. Simon B, Zanier K, Sattler M (2001) A TROSY relayed HCCH-COSY experiment for correlating adenine H2/H8 resonances in uniformly 13C-labeled RNA molecules. J Biomol NMR 20(2):173CrossRefGoogle Scholar
  9. Wutz A, Rasmussen TP, Jaenisch R (2002) Chromosomal silencing and localization are mediated by different domains of Xist RNA. Nat Genet 30(2):167–174CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Institute of Structural BiologyHelmholtz Zentrum MünchenNeuherbergGermany
  2. 2.Biomolecular NMR and Center for Integrated Protein Science Munich at Department ChemieTechnische Universität MünchenGarchingGermany

Personalised recommendations