Advertisement

Biomolecular NMR Assignments

, Volume 6, Issue 1, pp 39–41 | Cite as

1H, 15N and 13C backbone chemical shift assignment of the titin A67-A68 domain tandem

  • András Czajlik
  • Gary S. Thompson
  • Ghulam N. Khan
  • Arnout P. Kalverda
  • Steve W. Homans
  • John TrinickEmail author
Article

Abstract

Single molecules of the giant protein titin extend across half of the muscle sarcomere, from the Z-line to the M-line, and have roles in muscle assembly and elasticity. In the A-band titin is attached to thick filaments and here the domain arrangement occurs in regular patterns of eleven called the large super-repeat. The large super-repeat itself occurs eleven times and forms nearly half the titin molecule. Interactions of the large super-repeats with myosin are consistent with a role in thick filament assembly. Here we report backbone assignments of the titin A67-A68 domain tandem (Fn-Ig) from the third super-repeat (A65-A75) completed using triple resonance NMR experiments.

Keywords

Muscle protein Titin A-band Large super-repeat unit Immunoglobulin-fibronectin type III domain tandem 

Notes

Acknowledgments

This research supported by a grant from the British Heart Foundation to SWH and JT.

References

  1. Bucher RM, Svergun DI, Muhle-Goll C, Mayans O (2010) The structure of the FnIII tandem A77–A78 points to a periodically conserved architecture in the myosin-binding region of titin. J Mol Biol 401(5):843–853CrossRefGoogle Scholar
  2. Corrnilescu G, Delaglio F, Bax A (1999) Protein backbone angle restraints from searching a database for chemical shift and sequence homology. J Biomol NMR 13:289–302CrossRefGoogle Scholar
  3. Delaglio F, Grzesiek S, Vuister GW, Zhu G, Pfeifer J, Bax A (1995) NMR Pipe: a multidimensional spectral processing system based on UNIX pipes. J Biomol NMR 6:277–293CrossRefGoogle Scholar
  4. Labeit S, Gautel M, Lakey A, Trinick J (1992) Towards a molecular understanding of titin. EMBO J 11:1711–1716Google Scholar
  5. Tskhovrebova L, Trinick J (2003) Titin properties and family relationships. Nat Rev Mol Cell Biol 4:679–689CrossRefGoogle Scholar
  6. Tskhovrebova L, Walker ML, Grossmann JG, Khan GN, Baron A, Trinick J (2010) Shape and flexibility in the titin 11-domain super-repeat. J Mol Biol 397:1092–1105CrossRefGoogle Scholar
  7. Vranken WF, Boucher W, Stevens TJ, Fogh RH, Pajon A, Llinas M, Ulrich EL, Markley JL, Ionides J, Laue ED (2005) The CCPN data model for NMR spectroscopy: development of a software pipeline. Proteins 59:687–696CrossRefGoogle Scholar
  8. Whiting A, Wardale J, Trinick J (1989) Does titin regulate the length of muscle thick filaments? J Mol Biol 205:263–268CrossRefGoogle Scholar
  9. Wishart DS, Sykes BD (1994) The 13C chemical shift index: a simple method for the identification of protein secondary structure using 13C chemical shift data. J Biomol NMR 4:171–180CrossRefGoogle Scholar
  10. Wishart DS, Bigam GC, Holme A, Hodges RS, Sykes BD (1995) 1H, 13C, 15N random coil NMR chemical shifts of the common amino acids. Investigations of the nearest neighbour effects. J Biomol NMR 5:67–81CrossRefGoogle Scholar
  11. Wishart DS, Arndt D, Berjanskii M, Tang P, Zhou J, Lin G (2008) CS23D: a web server for rapid protein structure generation using NMR chemical shifts and sequence data. Nucleic Acids Res 36:W496–W502CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • András Czajlik
    • 1
  • Gary S. Thompson
    • 1
  • Ghulam N. Khan
    • 1
  • Arnout P. Kalverda
    • 1
  • Steve W. Homans
    • 1
  • John Trinick
    • 1
    Email author
  1. 1.Institute for Molecular and Cellular Biology and Astbury Centre for Structural Molecular BiologyUniversity of LeedsLeedsUK

Personalised recommendations