Biomolecular NMR Assignments

, Volume 5, Issue 2, pp 215–219 | Cite as

Backbone and Ile-δ1, Leu, Val Methyl 1H, 13C and 15N NMR chemical shift assignments for human interferon-stimulated gene 15 protein

  • Cuifeng Yin
  • James M. AraminiEmail author
  • Li-Chung Ma
  • John R. Cort
  • G. V. T. Swapna
  • Robert M. Krug
  • Gaetano T. MontelioneEmail author


Human interferon-stimulated gene 15 protein (ISG15), also called ubiquitin cross-reactive protein (UCRP), is the first identified ubiquitin-like protein containing two ubiquitin-like domains fused in tandem. The active form of ISG15 is conjugated to target proteins via the C-terminal glycine residue through an isopeptide bond in a manner similar to ubiquitin. The biological role of ISG15 is strongly associated with the modulation of cell immune function, and there is mounting evidence suggesting that many viral pathogens evade the host innate immune response by interfering with ISG15 conjugation to both host and viral proteins in a variety of ways. Here we report nearly complete backbone 1HN, 15N, 13C′, and 13Cα, as well as side chain 13Cβ, methyl (Ile-δ1, Leu, Val), amide (Asn, Gln), and indole N–H (Trp) NMR resonance assignments for the 157-residue human ISG15 protein. These resonance assignments provide the basis for future structural and functional solution NMR studies of the biologically important human ISG15 protein.


Backbone NMR resonance assignment Human ISG15 Innate immune response Ubiquitin-like protein 



Chemical shift index




2,2-Dimethyl-2-silapentane-5-sulfonic acid


Heteronuclear single quantum coherence




Interferon-stimulated gene 15


Isopropyl β-D-1-thiogalactopyranoside





This work was supported by National Institute of General Medical Sciences Protein Structure Initiative Grants U54-GM074958 and U54-GM094597 (to G.T.M.) and National Institutes of Allergy and Infectious Disease Grant AI11772 (to R.M.K.). The authors wish to thank Dr. David S. Waugh for kindly providing plasmid pKM596 and the BL21PRO cells. NMR spectra at 750 MHz were acquired in the Environmental Molecular Sciences Laboratory (a national scientific user facility sponsored by the U.S. Department of Energy Office of Biological and Environmental Research) located at Pacific Northwest National Laboratory and operated for DOE by Battelle (contract KP130103).


  1. Chang YG, Yan XZ, Xie YY, Gao XC, Song AX, Zhang DE, Hu HY (2008) Different roles for two ubiquitin-like domains of ISG15 in protein modification. J Biol Chem 283:13370–13377CrossRefGoogle Scholar
  2. D’Cunha J, Knight E Jr, Haas AL, Truitt RL, Borden EC (1996) Immunoregulatory properties of ISG15, an interferon-induced cytokine. Proc Natl Acad Sci USA 93:211–215ADSCrossRefGoogle Scholar
  3. Delaglio F, Grzesiek S, Vuister GW, Zhu G, Pfeifer J, Bax A (1995) NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J Biomol NMR 6:277–293CrossRefGoogle Scholar
  4. Goto NK, Gardner KH, Mueller GA, Willis RC, Kay LE (1999) A robust and cost-effective method for the production of Val, Leu, Ile (δ1) methyl-protonated 15N-, 13C-, 2H-labeled proteins. J Biomol NMR 13:369–374CrossRefGoogle Scholar
  5. Haas AL, Ahrens P, Bright PM, Ankel H (1987) Interferon induces a 15-kilodalton protein exhibiting marked homology to ubiquitin. J Biol Chem 262:11315–11323Google Scholar
  6. James TW, Frias-Staheli N, Bacik JP, Levingston Macleod JM, Khajehpour M, Garcia-Sastre A, Mark BL (2011) Structural basis for the removal of ubiquitin and interferon-stimulated gene 15 by a viral ovarian tumor domain-containing protease. Proc Natl Acad Sci USA 108:2222–2227ADSCrossRefGoogle Scholar
  7. Jansson M, Li YC, Jendeberg L, Anderson S, Montelione GT, Nilsson B (1996) High-level production of uniformly 15N- and 13C-enriched fusion proteins in Escherichia coli. J Biomol NMR 7:131–141CrossRefGoogle Scholar
  8. Jeon YJ, Yoo HM, Chung CH (2010) ISG15 and immune diseases. Biochim Biophys Acta 1802:485–496Google Scholar
  9. Moseley HN, Monleon D, Montelione GT (2001) Automatic determination of protein backbone resonance assignments from triple resonance nuclear magnetic resonance data. Methods Enzymol 339:91–108CrossRefGoogle Scholar
  10. Moseley HN, Sahota G, Montelione GT (2004) Assignment validation software suite for the evaluation and presentation of protein resonance assignment data. J Biomol NMR 28:341–355CrossRefGoogle Scholar
  11. Nallamsetty S, Austin BP, Penrose KJ, Waugh DS (2005) Gateway vectors for the production of combinatorially-tagged His6-MBP fusion proteins in the cytoplasm and periplasm of Escherichia coli. Protein Sci 14:2964–2971CrossRefGoogle Scholar
  12. Narasimhan J, Wang M, Fu Z, Klein JM, Haas AL, Kim JJ (2005) Crystal structure of the interferon-induced ubiquitin-like protein ISG15. J Biol Chem 280:27356–27365CrossRefGoogle Scholar
  13. Potter JL, Narasimhan J, Mende-Mueller L, Haas AL (1999) Precursor processing of pro-ISG15/UCRP, an interferon-β-induced ubiquitin-like protein. J Biol Chem 274:25061–25068CrossRefGoogle Scholar
  14. Skaug B, Chen ZJ (2010) Emerging role of ISG15 in antiviral immunity. Cell 143:187–190CrossRefGoogle Scholar
  15. Wishart DS, Sykes BD (1994) The 13C Chemical-Shift Index: a simple method for the identification of protein secondary structure using 13C chemical-shift data. J Biomol NMR 4:171–180CrossRefGoogle Scholar
  16. Yuan W, Krug RM (2001) Influenza B virus NS1 protein inhibits conjugation of the interferon (IFN)-induced ubiquitin-like ISG15 protein. EMBO J 20:362–371CrossRefGoogle Scholar
  17. Zhao C, Hsiang TY, Kuo RL, Krug RM (2010) ISG15 conjugation system targets the viral NS1 protein in influenza A virus-infected cells. Proc Natl Acad Sci USA 107:2253–2258ADSCrossRefGoogle Scholar
  18. Zheng D, Cort JR, Chiang Y, Acton T, Kennedy MA, Montelione GT (2003) 1H, 13C and 15N resonance assignments for methionine sulfoxide reductase B from Bacillus subtilis. J Biomol NMR 27:183–184CrossRefGoogle Scholar
  19. Zimmerman DE, Kulikowski CA, Huang Y, Feng W, Tashiro M, Shimotakahara S, Chien C, Powers R, Montelione GT (1997) Automated analysis of protein NMR assignments using methods from artificial intelligence. J Mol Biol 269:592–610CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Cuifeng Yin
    • 1
  • James M. Aramini
    • 1
    Email author
  • Li-Chung Ma
    • 1
  • John R. Cort
    • 2
  • G. V. T. Swapna
    • 1
  • Robert M. Krug
    • 3
  • Gaetano T. Montelione
    • 1
    • 4
    Email author
  1. 1.Department of Molecular Biology and Biochemistry, Center for Advanced Biotechnology and Medicine, Northeast Structural Genomics ConsortiumRutgers, The State University of New JerseyPiscatawayUSA
  2. 2.Biological Sciences Division, Pacific Northwest National LaboratoryNortheast Structural Genomics ConsortiumRichlandUSA
  3. 3.Section of Molecular Genetics and Microbiology, Institute for Cellular and Molecular BiologyUniversity of TexasAustinUSA
  4. 4.Department of Biochemistry, Robert Wood Johnson Medical SchoolUniversity of Medicine and Dentistry of New JerseyPiscatawayUSA

Personalised recommendations