Advertisement

Biomolecular NMR Assignments

, Volume 5, Issue 2, pp 169–175 | Cite as

Backbone assignment and secondary structure of the PsbQ protein from Photosystem II

  • Michaela Horničáková
  • Jaroslava Kohoutová
  • Judith Schlagnitweit
  • Christian Wohlschlager
  • Rüdiger Ettrich
  • Radovan Fiala
  • Wolfgang SchoefbergerEmail author
  • Norbert MüllerEmail author
Article

Abstract

PsbQ is one of the extrinsic proteins situated on the lumenal surface of photosystem II (PSII) in the higher plants and green algae. Its three-dimensional structure was determined by X-ray crystallography with exception of the residues 14–33. To obtain further details about its structure and potentially its dynamics, we approached the problem by NMR. In this paper we report 1H, 15N, and 13C NMR assignments for the PsbQ protein. The very challenging oligo-proline stretches could be assigned using 13C-detected NMR experiments that enabled the assignments of twelve out of the thirteen proline residues of PsbQ. The identification of PsbQ secondary structure elements on the basis of our NMR data was accomplished with the programs TALOS+, web server CS23D and CS-Rosetta. To obtain additional secondary structure information, three-bond HN-Hα J-coupling constants and deviation of experimental 13Cα and 13Cβ chemical shifts from random coil values were determined. The resulting “consensus” secondary structure of PsbQ compares very well with the resolved regions of the published X-ray crystallographic structure and gives a first estimate of the structure of the “missing link” (i.e. residues 14–33), which will serve as the basis for the further investigation of the structure, dynamics and interactions.

Keywords

Photosystem II PsbQ Missing link NMR resonance assignment Protein–protein interaction 

Notes

Acknowledgments

We would like to thank J.B. Arellano from CSIC Salamanca for providing the JR2592 expression vector, P. Schmieder, M. Beerbaum and B. Schlegel from FMP-Berlin for obtaining high field NMR spectra and for the helpful discussions. R. Keller is gratefully acknowledged for the assistance with CARA. For the use of web portals, computing and storage facilities the eNMR project (European FP7 e-Infrastructure grant, contract no. 213010, www.enmr.eu), supported by the national GRID Initiatives of Italy, Germany and the Dutch BiG Grid project (Netherlands Organization for Scientific Research) is acknowledged. This work has been supported by the Austrian Academic Exchange Service ÖAD (WTZ-AT-CZ), the Austrian Science Fund FWF (P18384 to W.S. and P15380 to N.M.) and East NMR Program of the European Union (EU FP7 Project/Contract number 228461). R. Ettrich and J. Kohoutova gratefully acknowledge support from the Ministry of Education, Youth and Sports of the Czech Republic (MSM6007665808, LC06010) and the Academy of Sciences of the Czech Republic (AVOZ60870520).

References

  1. Balsera M, Arellano JB, Guetiérrez JR, Heredia P, Revuelta JL, Rivas JDL (2003) Structural analysis of the PsbQ protein of Photosystem II by Fourier transform infrared and circular dichroic spectroscopy and by bioinformatic methods. Biochemistry 42:1000–1007CrossRefGoogle Scholar
  2. Balsera M, Arellano JB, Revuelta JL, Rivas JDL, Hermoso JA (2005) The 1.49 Å resolution crystal structure of PsbQ from Photosystem II of Spinacia oleracea reveals a PPII structure in the N-terminal region. J Mol Biol 350:1051–1060CrossRefGoogle Scholar
  3. Bermel W, Bertini I, Felli IC, Kummerle R, Pierattelli R (2006) Novel 13C direct detection experiments, including extension to the third dimension, to perform the complete assignment of proteins. J Magn Reson 178:56–64ADSCrossRefGoogle Scholar
  4. Bermel W, Felli IC, Kümmerle R, Pierattelli R (2008) 13C direct-detection biomolecular NMR. Concepts Magn Resonan Part A 32A:183–200CrossRefGoogle Scholar
  5. Bermel W, Bertini I, Csizmok V, Felli IC, Pierattelli R, Tompa P (2009) H-start for exclusively heteronuclear NMR spectroscopy: the case of intrinsically disordered proteins. J Magn Reson 198:275–281ADSCrossRefGoogle Scholar
  6. Boehlen JM, Bodenhausen G (1993) Experimental aspects of chirp NMR spectroscopy. J Magn Reson Ser A 102:293–301CrossRefGoogle Scholar
  7. Bottomley MJ, Macias MJ, Liu Z, Sattler M (1999) A novel NMR experiment for the sequential assignment of proline residues and proline stretches in 13C/15N-labeled proteins. J Biomol NMR 13:381–385CrossRefGoogle Scholar
  8. Boulat B, Emsley L, Müller N, Comadin G, Maryanski JL, Bodenhausen G (1991) NMR studies of an oligoproline-containing peptide analogue that binds specifically to the H-2Kd histocompatibility molecule. Biochemistry 30:9429–9434CrossRefGoogle Scholar
  9. Brudvig GW (2008) Water oxidation chemistry of photosystem II. Phil Trans R Soc B 363:1211–1219CrossRefGoogle Scholar
  10. Bryson K, McGuffin LJ, Marsden RL, Ward JJ, Sodhi JS, Jones DT (2005) Protein structure prediction servers at University College London. Nucl Acids Res 33:W36–W38CrossRefGoogle Scholar
  11. Chary KVR, Govil G (2008) NMR in biological systems: focus on structural biology, vol 6. Springer, DordrechtGoogle Scholar
  12. Duma L, Hediger S, Lesage A, Emsley L (2003) Spin-state selection in solid-state NMR. J Magn Reson 164:187–195ADSCrossRefGoogle Scholar
  13. Emsley L, Bodenhausen G (1990) Gaussian pulse cascades: new analytical functions for rectangular selective inversion and in-phase excitation in NMR. Chem Phys Lett 165:469–476ADSCrossRefGoogle Scholar
  14. Enami I, Okumura A, Nagao R, Suzuki T, Iwai M, Shen J-R (2008) Structures and functions of the extrinsic proteins of photosystem II from different species. Photosynth Res 98:349–363CrossRefGoogle Scholar
  15. Ferreira KN, Iverson TM, Maghlaoui K, Barber J, Iwata S (2004) Architecture of the Photosynthetic Oxygen-Evolving Center. Science 303:1831–1838ADSCrossRefGoogle Scholar
  16. Ghanotakis DF, Topper JN, Yocum CF (1984) Structural organization of the oxidizing side of photosystem II. Exogenous reductants reduce and destroy the Mn-complex in photosystems II membranes depleted of the 17 and 23 kDa polypeptides. Biochim Biophys Acta 767:524–531CrossRefGoogle Scholar
  17. Grzesiek S, Anglister J, Bax A (1993) Correlation of backbone amide and aliphatic side-chain resonances in 13C/15N-Enriched proteins by isotropic mixing of 13C magnetization. J Magn Reson Ser B 101:14–119CrossRefGoogle Scholar
  18. Jones DT (1999) Protein secondary structure prediction based on position-specific scoring matrices. J Mol Biol 292:195–202CrossRefGoogle Scholar
  19. Kanelis V, Donaldson L, Muhandiram DR, Rotin D, Forman-Kay JD, Kay LE (2000) Sequential assignment of proline-rich regions in proteins: application to modular binding domain complexes. J Biomol NMR 16:253–259CrossRefGoogle Scholar
  20. Kashino Y, Inoue-Kashino N, Roose JL, Pakrasi HB (2006) Absence of the PsbQ protein results in destabilization of the PsBV protein and decreased oxygen evolution activity in Cyanobacterial Photosystem II. J Biol Chem 281:20834–20841CrossRefGoogle Scholar
  21. Keller RLJ (2004) Optimizing the process of nuclear magnetic resonance spectrum analysis and computer aided resonance assignment. Dissertation. ZürichGoogle Scholar
  22. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685ADSCrossRefGoogle Scholar
  23. Ljungberg U, Ĺkerlund H-E, Andersson B (1986) Isolation and characterization of the 10-kDa and 22-kDa polypeptides of higher plant photosystem 2. Eur J Biochem 158:477–482CrossRefGoogle Scholar
  24. Meades-Jr GD, McLachlan A, Sallans L, Limbach PA, Frankel LK, Bricker TM (2005) Association of the 17-kDa extrinsic protein with Photosystem II in higher plants. Biochem J 44:15216–15221CrossRefGoogle Scholar
  25. Montelione GT, Lyons BA, Emerson SD, Tashiro M (1992) An efficient triple resonance experiment using carbon-13 isotropic mixing for determining sequence-specific resonance assignments of isotopically-enriched proteins. J Am Chem Soc 114:10974–10975CrossRefGoogle Scholar
  26. Nelson N, Yocum CF (2006) Structure and function of Photosystem I and II. Annu Rev Plant Biol 57:521–565CrossRefGoogle Scholar
  27. Nowaczyk M, Berghaus C, Stollb R, Rögner M (2004) Preliminary structural characterisation of the 33 kDa protein (PsbO) in solution studied by site-directed mutagenesis and NMR spectroscopy. Phys Chem Chem Phys 6:4878–4881CrossRefGoogle Scholar
  28. Pardi A, Billeter M, Wüthrich K (1984) Calibration of the angular dependence of the amide proton-Cα proton coupling constants, 3JHNα, in a globular protein. Use of 3JHNα for identification of helical secondary structure. J Mol Biol 180:741–751CrossRefGoogle Scholar
  29. Ristvejová J, Kopecký-Jr V, Sovová Ž, Balsera M, Arellano JB, Green M, Ettrich R (2006) Structure and dynamics of the N-terminal loop of PsbQ from photosystem II of Spinacia oleracea. Biochem Biophys Res Commun 345:287–291CrossRefGoogle Scholar
  30. Rivas JDL, Barber J (2004) Analysis of the structure of the PsbO protein and its implications. Photosynth Res 81:329–343CrossRefGoogle Scholar
  31. Roose JL, Wegener KM, Pakrasi HB (2007) The extrinsic proteins of Photosystem II. Photosynth Res 92:369–387CrossRefGoogle Scholar
  32. Schwarzinger S, Kroon GJA, Foss TR, Chung J, Wright PE, Dyson HJ (2001) Sequence-dependent correction of random coil NMR chemical shifts. J Am Chem Soc 123:2970–2978CrossRefGoogle Scholar
  33. Seidler A (1996) The extrinsic polypeptides of Photosystem II. Biochim Biophys Acta 1277:35–60CrossRefGoogle Scholar
  34. Shen Y, Lange O, Delaglio F (2008) Consistent blind protein structure generation from NMR chemical shift data. PNAS 105:4685–4690ADSCrossRefGoogle Scholar
  35. Shen Y, Delaglio F, Cornilescu G, Bax A (2009a) TALOS+: a hybrid method for predicting protein backbone torsion angles from NMR chemical shifts. J Biomol NMR 44:213–223CrossRefGoogle Scholar
  36. Shen Y, Vernon R, Baker D, Bax A (2009b) De novo protein structure generation from incomplete chemical shift assignments. J Biomol NMR 43:63–78CrossRefGoogle Scholar
  37. Suorsa M, Sirpiö S, Allahverdiyeva Y, Paakkarinen V, Mamedov F, Styring S, Aro E-M (2006) PsbR, a missing link in the assembly of the oxygen-evolving complex of plant Photosystem II. J Biol Chem 281:145–150CrossRefGoogle Scholar
  38. Vuister GW, Bax A (1993) Quantitative J correlation: a new approach for measuring homonuclear three-bond J(HNHα) coupling constants in 15N-enriched proteins. J Am Chem Soc 115:7772–7777CrossRefGoogle Scholar
  39. Wishart DS, Bigam CG, Holm A, Hodges RS, Sykes BD (1995) 1H, 13C and 15N random coil NMR chemical shifts of the common amino acids. Investigations of nearest-neighbor effects. J Biomol NMR 5:67–81CrossRefGoogle Scholar
  40. Wishart DS, Arndt D, Berjanskii M, Tang P, Zhou J, Lin G (2008) CS23D: a web server for rapid protein structure generation using NMR chemical shifts and sequence data. Nucleic Acids Res 36:W496–W502CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Michaela Horničáková
    • 1
  • Jaroslava Kohoutová
    • 2
    • 7
  • Judith Schlagnitweit
    • 1
  • Christian Wohlschlager
    • 3
  • Rüdiger Ettrich
    • 2
    • 4
  • Radovan Fiala
    • 5
  • Wolfgang Schoefberger
    • 6
    Email author
  • Norbert Müller
    • 1
    Email author
  1. 1.Institute of Organic ChemistryJohannes Kepler UniversityLinzAustria
  2. 2.Institute of Systems Biology and EcologyAcademy of Sciences of the Czech RepublicNové HradyCzech Republic
  3. 3.Virtual Reality ServicesJohannes Kepler UniversityLinzAustria
  4. 4.Faculty of SciencesUniversity of South BohemiaNové HradyCzech Republic
  5. 5.National Centre for Biomolecular ResearchMasaryk UniversityBrnoCzech Republic
  6. 6.Institute of Inorganic Chemistry, Center of Nanobionics and Photochemical Sciences (CNPS)LinzAustria
  7. 7.Institute of Physical BiologyUniversity of South BohemiaNové HradyCzech Republic

Personalised recommendations