Biomolecular NMR Assignments

, Volume 5, Issue 2, pp 157–160 | Cite as

1H, 13C, and 15N backbone and side-chain chemical shift assignment of the staphylococcal MazF mRNA interferase

  • Valentina Zorzini
  • Sarah Haesaerts
  • Ambrose Cheung
  • Remy Loris
  • Nico A. J. van Nuland
Article

Abstract

MazF proteins are ribonucleases that cleave mRNA with high sequence-specificity as part of bacterial stress response and that are neutralized by the action of the corresponding antitoxin MazE. Prolonged activation of the toxin MazF leads to cell death. Several mazEF modules from Gram-negative bacteria have been characterized in terms of catalytic activity, auto-regulation mechanism and structure, but less is known about their distant relatives found in Gram-positive organisms. Currently, no solution NMR structure is available for any wild-type MazF toxin. Here we report the 1H, 15N and 13C backbone and side-chain chemical shift assignments of this toxin from the pathogen bacterium Staphylococcus aureus. The BMRB accession number is 17288.

Keywords

Toxin-antitoxin module Macromolecular complex NMR MazF Staphylococcus aureus 

References

  1. Buts L, Lah J, Dao-Thi M, Wyns L, Loris R (2005) Toxin-antitoxin modules as bacterial metabolic stress managers. Trends Biochem Sci 30:672–679CrossRefGoogle Scholar
  2. Chen Y, Delaglio F, Cornilescu G, Bax A (2009) TALOS plus: a hybrid method for predicting protein backbone torsion angles from NMR chemical shifts. J Biomol NMR 44:213–223CrossRefGoogle Scholar
  3. Coles M, Hulko M, Djuranovic S, Truffault V, Koretke K, Martin J, Lupas AN (2006) Common evolutionary origin of swapped-hairpin and double-psi β barrels. Structure 14:1489–1498CrossRefGoogle Scholar
  4. Delaglio F, Grzesiek S, Vuister GW, Zhu G, Pfiefer J, Bax A (1995) NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J Biomol NMR 6:277–293CrossRefGoogle Scholar
  5. Donegan NP, Cheung AL (2009) Regulation of the mazEF toxin–antitoxin module in Staphylococcus aureus and its impact on sigB expression. J Bacteriol 191:2795–2805CrossRefGoogle Scholar
  6. Engelberg-Kulka H, Amitai S, Kolodkin-Gal I, Hazan R (2006) Bacterial programmed cell death and multicellular behaviour in bacteria. PLoS Genet 2:e135CrossRefGoogle Scholar
  7. Fu Z, Donegan NP, Memmi G, Cheung AL (2007) Characterization of MazFSa, an Endoribonuclease from Staphylococcus aureus. J Bacteriol 189:8871–8879CrossRefGoogle Scholar
  8. Gerdes K, Pandey DP (2005) Toxin–antitoxin loci are highly abundant in free-living but lost from host-associated prokaryotes. Nucleic Acids Res 33:966–976CrossRefGoogle Scholar
  9. Gerdes K, Christensen SK, Lobner-Olesen A (2005) Prokaryotic toxin–antitoxin stress response loci. Nat Rev Microbiol 3:371–382CrossRefGoogle Scholar
  10. Gogos A, Mu H, Bahna F, Gomez CA, Shapiro L (2003) Crystal structure of YdcE protein from Bacillus subtilis. Proteins 53:320–322CrossRefGoogle Scholar
  11. Inouye M (2005) Insights into the mRNA Cleavage Mechanism by MazF, an mRNA Interferase. J Biol Chem 280:3143–3145Google Scholar
  12. Inouye M (2006) The discovery of mRNA interferases: implication in bacterial physiology and application to biotechnology. J Cell Physiol 209:670–676CrossRefGoogle Scholar
  13. Johnson BA (2004) Using NMRView to visualize and analyze the NMR spectra of macromolecules. Methods Mol Biol 278:313–352Google Scholar
  14. Kamada K, Hanaoka F, Burley SK (2003) Crystal structure of the MazE/MazF complex: molecular bases of antidote-toxin recognition. Mol Cell 11:875–884CrossRefGoogle Scholar
  15. Kim Y, Wood TK (2010) Toxins Hha and CspD and small RNA regulator Hfq are involved in persister cell formation through MqsR in Escherichia coli. Biochem Biophys Res Commun 391:209–213CrossRefGoogle Scholar
  16. Kolodkin-Gal I, Hazan R, Gaathon A, Carmeli S, Engelberg-Kulka H (2007) A linear pentapeptide is a quorum-sensing factor required for mazEF-mediated cell death in Escherichia coli. Science 318:652–655ADSCrossRefGoogle Scholar
  17. Lewis K (2010) Persister cells. Annu Rev Microbiol 64:357–372CrossRefGoogle Scholar
  18. Li GY, Zhang Y, Chan MC, Mal TK, Hoeflich KP, Inouye M, Ikura M (2006) Characterization of dual substrate binding sites in the homodimeric structure of Escherichia coli mRNA interferase MazF. J Mol Biol 357:139–150CrossRefGoogle Scholar
  19. Sattler M, Schleucher J, Griesinger C (1999) Heteronuclear multidimensional NMR experiments for the structure determination of proteins in solution employing pulsed field gradients. Prog Nucl Magn Reson Spectrosc 34:93–158CrossRefGoogle Scholar
  20. Vranken WF, Boucher W, Stevens TJ, Fogh RH, Pajon A, Llinas M, Ulrich EL, Markley JL, Ionides J, Laue ED (2005) The CCPN data model for NMR spectroscopy: development of a software pipeline. Proteins 59:687–696CrossRefGoogle Scholar
  21. Wishart DS, Sykes BD (1994) The 13C chemical-shift index: a simple method for the identification of protein secondary structure using 13C chemical-shift data. J Biomol NMR 4:171–180CrossRefGoogle Scholar
  22. Yamazaki T, Forman-Kay JD, Kay LE (1993) Two-dimensional NMR experiments for correlating 13Cb and 1Hd/e chemical shifts of aromatic residues in 13C-labeled proteins via scalar couplings. J Am Chem Soc 115:11054–11055CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Valentina Zorzini
    • 1
    • 2
  • Sarah Haesaerts
    • 1
    • 2
  • Ambrose Cheung
    • 3
  • Remy Loris
    • 1
    • 2
  • Nico A. J. van Nuland
    • 1
    • 2
  1. 1.Structural Biology BrusselsVrije Universiteit Brussel (VUB)BrusselsBelgium
  2. 2.Department of Molecular and Cellular InteractionsVIBBrusselsBelgium
  3. 3.Department of Microbiology and ImmunologyDartmouth Medical SchoolHanoverUSA

Personalised recommendations