Biomolecular NMR Assignments

, Volume 5, Issue 1, pp 63–66 | Cite as

1H, 13C, 15N backbone and side-chain resonance assignments of the human Raf-1 kinase inhibitor protein

  • Cuiying Yi
  • Yu Peng
  • Chenyun Guo
  • Donghai LinEmail author


Raf-1 kinase inhibitor protein (RKIP) plays a pivotal role in modulating multiple signaling networks. Here we report backbone and side chain resonance assignments of uniformly 15N, 13C labeled human RKIP.


NMR resonance assignments RKIP Secondary structure prediction 



This work was supported by grants from the Natural Science Foundation of China (Nos. 30900233, 30730026) and the Program of Shanghai Subject Chief Scientist (No. 09XD1405100). We would like to thank Prof. J. Y. Li for providing the human RKIP gene.


  1. Banfield MJ, Barker JJ et al (1998) Function from structure? The crystal structure of human phosphatidylethanolamine-binding protein suggests a role in membrane signal transduction. Structure 6(10):1245–1254CrossRefGoogle Scholar
  2. Corbit KC, Trakul N et al (2003) Activation of Raf-1 signaling by protein kinase C through a mechanism involving Raf kinase inhibitory protein. J Biol Chem 278(15):13061–13068CrossRefGoogle Scholar
  3. Delaglio F, Grzesiek S et al (1995) NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J Biomol NMR 6(3):277–293CrossRefGoogle Scholar
  4. Dhillon AS, Hagan S et al (2007) MAP kinase signalling pathways in cancer. Oncogene 26(22):3279–3290CrossRefGoogle Scholar
  5. Frayne J, McMillen A et al (1998) Expression of phosphatidylethanolamine-binding protein in the male reproductive tract: immunolocalisation and expression in prepubertal and adult rat testes and epididymides. Mol Reprod Dev 49(4):454–460CrossRefGoogle Scholar
  6. Frayne J, Ingram C et al (1999) Localisation of phosphatidylethanolamine-binding protein in the brain and other tissues of the rat. Cell Tissue Res 298(3):415–423CrossRefGoogle Scholar
  7. Kroslak T, Koch T et al (2001) Human phosphatidylethanolamine-binding protein facilitates heterotrimeric G protein-dependent signaling. J Biol Chem 276(43):39772–39778CrossRefGoogle Scholar
  8. Lorenz K, Lohse MJ et al (2003) Protein kinase C switches the Raf kinase inhibitor from Raf-1 to GRK-2. Nature 426(6966):574–579ADSCrossRefGoogle Scholar
  9. Pearson G, Robinson F et al (2001) Mitogen-activated protein (MAP) kinase pathways: regulation and physiological functions. Endocr Rev 22(2):153–183CrossRefGoogle Scholar
  10. Roberts PJ, Der CJ (2007) Targeting the Raf-MEK-ERK mitogen-activated protein kinase cascade for the treatment of cancer. Oncogene 26(22):3291–3310CrossRefGoogle Scholar
  11. Schoentgen F, Seddiqi N et al (1992) Main structural and functional features of the basic cytosolic bovine 21 kDa protein delineated through hydrophobic cluster analysis and molecular modelling. Protein Eng 5(4):295–303CrossRefGoogle Scholar
  12. Trakul N, Rosner MR (2005) Modulation of the MAP kinase signaling cascade by Raf kinase inhibitory protein. Cell Res 15(1):19–23CrossRefGoogle Scholar
  13. Wellbrock C, Karasarides M et al (2004) The RAF proteins take centre stage. Nat Rev Mol Cell Biol 5(11):875–885CrossRefGoogle Scholar
  14. Wishart DS, Sykes BD (1994) The 13C chemical-shift index: a simple method for the identification of protein secondary structure using 13C chemical-shift data. J Biomol NMR 4(2):171–180CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Cuiying Yi
    • 1
  • Yu Peng
    • 1
  • Chenyun Guo
    • 1
    • 2
  • Donghai Lin
    • 1
    • 2
    Email author
  1. 1.NMR laboratoryShanghai Institute of Materia Medica, Chinese Academy of ScienceShanghaiChina
  2. 2.The Key Laboratory for Chemical Biology of Fujian ProvinceCollege of Chemistry and Chemical Engineering, Xiamen UniversityXiamenChina

Personalised recommendations