Advertisement

Biomolecular NMR Assignments

, Volume 4, Issue 1, pp 33–36 | Cite as

NMR assignment and backbone dynamics of the pore-forming domain of colicin A

  • Alain Ibañez de Opakua
  • Tammo Diercks
  • Ana R. VigueraEmail author
  • Francisco J. BlancoEmail author
Article
  • 96 Downloads

Abstract

Colicin A protein kills cells by opening voltage-dependent ion channels in the cytoplasmic membrane. The C-terminal domain of colicin A retains the full protein’s ability to form membrane pores, making it an excellent model for in vitro studies of protein-membrane interaction. We report here the NMR assignment and backbone dynamics of this domain in solution. The chemical shifts identify ten α-helices that match those observed in the crystal structure, while the 15N{1H} NOEs show differential fast mobility for some of the inter-helical loops and the chain ends. This analysis provides the basis for further NMR studies of this channel forming protein and its interactions.

Keywords

Colicin A Membrane pore Toxin Membrane insertion NMR assignment 

Notes

Acknowledgments

This work was funded by grant CTQ2008-03115/BQU to FJB from the Spanish Ministerio de Ciencia e Innovación (MCI) and BFU2006-14423/BMC (MEC).

References

  1. Baty D, Frenette M, Lloubes R, Geli V, Howard SP, Pattus F, Lazdunski C (1988) Functional domains of colicin A. Mol Microbiol 2:807–811CrossRefGoogle Scholar
  2. Berjanskii MV, Wishart DS (2005) A simple method to predict protein flexibility using secondary chemical shifts. J Am Chem Soc 127:14970–14971CrossRefGoogle Scholar
  3. Goddar TD, Kneller DG (2008) Sparky—NMR assignment and integration software. San Francisco. http://www.cgl.ucsf.edu/home/sparky/
  4. Iacovache I, van der Goot FG, Pernot L (2008) Pore formation: an ancient yet complex form of attack. Biochim Biophys Acta 1778:1611–1623CrossRefGoogle Scholar
  5. Jung YS, Zweckstetter M (2004) Mars—robust automatic backbone assignment of proteins. J Biomol NMR 30:11–23CrossRefGoogle Scholar
  6. Martinez MC, Lazdunski C, Pattus F (1983) Isolation, molecular and functional properties of the C-terminal domain of colicin A. EMBO J 2:1501–1507Google Scholar
  7. Parker MW, Pattus F, Tucker AD, Tsernoglou D (1989) Structure of the membrane-pore-forming fragment of colicin A. Nature 337:93–96CrossRefADSGoogle Scholar
  8. Parker MW, Postma JP, Pattus F, Tucker AD, Tsernoglou D (1992) Refined structure of the pore-forming domain of colicin A at 2.4 A resolution. J Mol Biol 224:639–657CrossRefGoogle Scholar
  9. Shen Y, Delaglio F, Cornilescu G, Bax A (2009) TALOS+: a hybrid method for predicting protein backbone torsion angles from NMR chemical shifts. J Biomol NMR 44:213–223CrossRefGoogle Scholar
  10. Slatin SL, Finkelstein A, Kienker PK (2008) Anomalous proton selectivity in a large channel: colicin A. Biochemistry 47:1778–1788CrossRefGoogle Scholar
  11. Wishart DS, Sykes BD (1994) The 13C chemical-shift index: a simple method for the identification of protein secondary structure using 13C chemical-shift data. J Biomol NMR 4:171–180CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Unidad de Biofísica (CSIC-UPV/EHU)Leioa-VizcayaSpain
  2. 2.Structural Biology UnitCIC bioGUNEDerioSpain

Personalised recommendations