NMR assignments of oxidised thioredoxin from Plasmodium falciparum

  • Claudia Elisabeth MunteEmail author
  • Katja Becker
  • Rolf Heiner Schirmer
  • Hans Robert KalbitzerEmail author


During its life cycle, the malaria parasite Plasmodium falciparum is found intracellular to human erythrocytes, where its survival and ability to multiply critically depends on the control of the environment redox state. Thioredoxin is a small protein containing 104 amino acids that is part of the parasite specific redox system. During the catalytic cycle it alternates between a reduced and oxidised form. Here we report the complete resonance assignment of Plasmodium falciparum thioredoxin in its oxidized form by heteronuclear multidimensional spectroscopy. The obtained chemical shifts differ significantly from those reported earlier for this protein in its reduced state.


Plasmodium falciparum thioredoxin Combined chemical shift NMR resonance assignments 


  1. Becker K, Tilley L, Vennerstrom JL, Roberts D, Rogerson S, Ginsburg H (2004) Oxidative stress in malaria parasite-infected erythrocytes: host–parasite interactions. Int J Parasitol 34:163–189. doi: 10.1016/j.ijpara.2003.09.011 CrossRefGoogle Scholar
  2. Gronwald W, Kalbitzer HR (2004) Automated structure determination of proteins by NMR spectroscopy. Prog NMR Spectr 44:33–96. doi: 10.1016/j.pnmrs.2003.12.002 CrossRefGoogle Scholar
  3. Kanzok S, Schirmer RH, Türbachova I, Iozef R, Becker K (2000) The thioredoxin system of the malaria parasite Plasmodium falciparum. Glutathione reduction revisited. J Biol Chem 275:40180–40186. doi: 10.1074/jbc.M007633200 CrossRefGoogle Scholar
  4. Krnajski Z, Gilberger TW, Walter RD, Müller S (2001) The malaria parasite Plasmodium falciparum possesses a functional thioredoxin system. Mol Biochem Parasitol 112:219–228. doi: 10.1016/S0166-6851(00)00372-8 CrossRefGoogle Scholar
  5. Markley JL, Bax A, Arata Y, Hilbert CW, Kaptein R, Sykes BD, Wright PE, Wüthrich K (1998) Recommendations for the presentation of NMR structures of proteins and nucleic acids. Pure Appl Chem 70:117–142. doi: 10.1351/pac199870010117 CrossRefGoogle Scholar
  6. Müller S (2004) MicroReview: redox and antioxidant systems of the malaria parasite Plasmodium falciparum. Mol Microbiol 53:1291–1305. doi: 10.1111/j.1365-2958.2004.04257.x CrossRefGoogle Scholar
  7. Munte CE, Becker K, Schirmer RH, Kalbitzer HR (2005) Letter to the Editor: 1H, 13C, and 15N sequence-specific resonance assignment and secondary structure of Plasmodium falciparum thioredoxin. J Biomol NMR 32:340CrossRefGoogle Scholar
  8. Nickel C, Rahlfs S, Deponte M, Koncarevic S, Becker K (2006) Thioredoxin networks in the malarial parasite Plasmodium falciparum. Antioxid Redox Signal 8:1227–1239. doi: 10.1089/ars.2006.8.1227 CrossRefGoogle Scholar
  9. Rahlfs S, Nickel C, Deponte M, Schirmer RH, Becker K (2003) Plasmodium falciparum thioredoxins and glutaredoxins as central players in redox metabolism. Redox Rep 8:246–250. doi: 10.1179/135100003225002844 CrossRefGoogle Scholar
  10. Schumann FH, Riepl H, Maurer T, Gronwald W, Neidig K-P, Kalbitzer HR (2007) Combined chemical shift changes and amino acid specific chemical shift mapping of protein-protein interactions. J Biomol NMR 39:275–289. doi: 10.1007/s10858-007-9197-z CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Institut für Biophysik und Physikalische BiochemieUniversität RegensburgRegensburgGermany
  2. 2.Interdiziplinäres ForschungszentrumUniversität GiessenGiessenGermany
  3. 3.Biochemie-Zentrum der UniversitätHeidelbergGermany

Personalised recommendations