Biomolecular NMR Assignments

, Volume 3, Issue 1, pp 145–147 | Cite as

Sequence-specific 1H, 15N and 13C resonance assignments of the 23.7-kDa homodimeric toxin CcdB from Vibrio fischeri

  • Michal Respondek
  • Lieven Buts
  • Natalie De Jonge
  • Sarah Haesaerts
  • Remy Loris
  • Laurence Van Melderen
  • Lode Wyns
  • Klaus Zangger
Article

Abstract

CcdB is the toxic component of a bacterial toxin–antitoxin system. It inhibits DNA gyrase (a type II topoisomerase), and its toxicity can be neutralized by binding of its antitoxin CcdA. Here we report the sequential backbone and sidechain 1H, 15N and 13C resonance assignments of CcdBVfi from the marine bacterium Vibrio fischeri. The BMRB accession number is 16135.

Keywords

CcdB Toxin–antitoxin systems Chromosomal ccd operon Homodimeric protein 

Notes

Acknowledgments

Funding by the Austrian Science Foundation (FWF) under project number 19902 to K.Z. is gratefully acknowledged. L. B. is a postdoctoral fellow of the Research Foundation-Flanders (FWO) N.D.J. acknowledges receipt of PhD grants from IWT and the Onderzoeksraad of the VUB. Further financial support was provided by FWO-Vlaanderen and VIB.

References

  1. Buts L, Lah J, Dao-Thi MH et al (2005) Toxin-antitoxin modules as bacterial metabolic stress managers. Trends Biochem Sci 30:672–679Google Scholar
  2. Dao-Thi MH, Van Melderen L, De Genst E et al (2005) Molecular basis of gyrase poisoning by the addiction toxin CcdB. J Mol Biol 348:1091–1102. doi: 10.1016/j.jmb.2005.03.049 CrossRefGoogle Scholar
  3. De Jonge N, Buts L, Vangelooven J et al (2007) Purification and crystallization of Vibrio fischeri CcdB and its complexes with fragments of gyrase and CcdA. Acta Crystallogr 63:356–360Google Scholar
  4. Gerdes K, Christensen SK, Lobner-Olesen A (2005) Prokaryotic toxin–antitoxin stress response loci. Nat Rev Microbiol 3:371–382. doi: 10.1038/nrmicro1147 CrossRefGoogle Scholar
  5. Loris R, Dao-Thi MH, Bahassi EM et al (1999) Crystal structure of CcdB, a topoisomerase poison from E. coli. J Mol Biol 285:1667–1677. doi: 10.1006/jmbi.1998.2395 CrossRefGoogle Scholar
  6. Madl T, Van Melderen L, Mine N et al (2006) Structural basis for nucleic acid and toxin recognition of the bacterial antitoxin CcdA. J Mol Biol 364:170–185. doi: 10.1016/j.jmb.2006.08.082 CrossRefGoogle Scholar
  7. Ogura T, Hiraga S (1983) Mini-F plasmid genes that couple host cell division to plasmid proliferation. Proc Natl Acad Sci USA 80:4784–4788. doi: 10.1073/pnas.80.15.4784 CrossRefADSGoogle Scholar
  8. Rowe-Magnus DA, Guerout AM, Biskri L et al (2003) Comparative analysis of superintegrons: engineering extensive genetic diversity in the Vibrionaceae. Genome Res 13:428–442. doi: 10.1101/gr.617103 CrossRefGoogle Scholar
  9. Van Melderen L (2002) Molecular interactions of the CcdB poison with its bacterial target, the DNA gyrase. Int J Med Microbiol 291:537–544. doi: 10.1078/1438-4221-00164 CrossRefGoogle Scholar
  10. Van Melderen L, Thi MH, Lecchi P et al (1996) ATP-dependent degradation of CcdA by Lon protease. Effects of secondary structure and heterologous subunit interactions. J Biol Chem 271:27730–27738CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Michal Respondek
    • 1
  • Lieven Buts
    • 2
    • 3
  • Natalie De Jonge
    • 2
    • 3
  • Sarah Haesaerts
    • 2
    • 3
  • Remy Loris
    • 2
    • 3
  • Laurence Van Melderen
    • 4
  • Lode Wyns
    • 2
    • 3
  • Klaus Zangger
    • 1
  1. 1.Institute of Chemistry/Organic and Bioorganic ChemistryUniversity of GrazGrazAustria
  2. 2.Structural Biology BrusselsVrije Universiteit BrusselBrusselBelgium
  3. 3.Structural Biology Brussels, Department of Molecular and Cellular InteractionsVIBBrusselBelgium
  4. 4.Laboratoire de Génétique et de Physiologie Bactérienne, Institut de Biologie et de Médecine Moléculaires, Faculté des SciencesUniversité Libre de BruxellesGosseliesBelgium

Personalised recommendations