Advertisement

Biomolecular NMR Assignments

, Volume 2, Issue 2, pp 131–133 | Cite as

Backbone NMR assignments of DFP-inhibited mature subtilisin E

  • Yu-Jen Chen
  • Kuen-Phon Wu
  • Seho Kim
  • Liliana Falzon
  • Masayori InouyeEmail author
  • Jean BaumEmail author
Article

Abstract

Here we report the backbone chemical shifts of the DFP-inhibited mature subtilisin E, which was uniformly labeled by 13C, 15N with a supplement of excess calcium.

Keywords

Subtilisin Intramolecular chaperone Serine protease Propeptide 

References

  1. Bryan P, Wang L, Hoskins J, Ruvinov S, Strausberg S, Alexander P, et al (1995) Catalysis of a protein folding reaction: mechanistic implications of the 2.0 a structure of the subtilisin-prodomain complex. Biochemistry 34:10310–10318. doi: 10.1021/bi00032a026 CrossRefGoogle Scholar
  2. Delaglio F, Grzesiek S, Vuister GW, Zhu G, Pfeifer J, Bax A (1995) NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J Biomol NMR 6:277–293. doi: 10.1007/BF00197809 CrossRefGoogle Scholar
  3. Ferentz AE, Wagner G (2000) NMR spectroscopy: a multifaceted approach to macromolecular structure. Q Rev Biophys 33:29–65. doi: 10.1017/S0033583500003589 CrossRefGoogle Scholar
  4. Ikemura H, Inouye M (1988) In vitro processing of pro-subtilisin produced in Escherichia coli. J Biol Chem 263:12959–12963Google Scholar
  5. Ikemura H, Takagi H, Inouye M (1987) Requirement of pro-sequence for the production of active subtilisin E in Escherichia coli. J Biol Chem 262:7859–7864Google Scholar
  6. Inouye M (1991) Intramolecular chaperone: the role of the pro-peptide in protein folding. Enzyme 45:314–321Google Scholar
  7. Keller R (2004) The computer aided resonance assignment tutorial. Cantina Verlag, SwitzerlandGoogle Scholar
  8. Marsh JA, Singh VK, Jia Z, Forman-Kay JD (2006) Sensitivity of secondary structure propensities to sequence differences between alpha- and gamma-synuclein: implications for fibrillation. Protein Sci 15:2795–2804. doi: 10.1110/ps.062465306 CrossRefGoogle Scholar
  9. Sari N, Fisher KE, Bryan PN, Orban J (2007) Main chain NMR assignments of subtilisin Sbt70 in its prodomain-bound state. Biomol NMR Assign 1:209–211CrossRefGoogle Scholar
  10. Sattler M, Schleucher JG, Griesinger C (1999) Heteronuclear multidimensional NMR experiments for the structure determination of proteins in solution employing pulsed field gradients. Prog NMR Spectrosc 34:93–158. doi: 10.1016/S0079-6565(98)00025-9 CrossRefGoogle Scholar
  11. Yabuta Y, Subbian E, Takagi H, Shinde U, Inouye M (2002) Folding pathway mediated by an intramolecular chaperone: dissecting conformational changes coincident with autoprocessing and the role of Ca(2+) in subtilisin maturation. J Biochem 131:31–37Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.Department of BiochemistryRobert-Wood-Johnson Medical SchoolPiscatawayUSA
  2. 2.Department of Chemistry and Chemical BiologyRutgers UniversityPiscatawayUSA
  3. 3.BioMaPS Institute for Quantitative BiologyRutgers UniversityPiscatawayUSA

Personalised recommendations