Biomolecular NMR Assignments

, Volume 1, Issue 2, pp 191–194 | Cite as

NMR assignment of the domain 513–651 from the SARS-CoV nonstructural protein nsp3

  • Amarnath Chatterjee
  • Margaret A. Johnson
  • Pedro Serrano
  • Bill Pedrini
  • Kurt Wüthrich
Article

Abstract

Sequence-specific NMR assignments of an internal domain of the protein nsp3, nsp3(513–651), which is a part of the SARS coronavirus (SARS-CoV) replicase polyprotein, have been determined, using triple-resonance NMR experiments with the uniformly [13C,15N]-labeled protein. The complete assignments (>99%) provide the basis for the ongoing three-dimensional structure determination.

Keywords

SARS-CoV Nonstructural protein nsp3 nsp3c SARS-unique domain 

References

  1. Bartlam M, Yang H, Rao Z (2005) Structural insights into SARS coronavirus proteins. Curr Opin Struct Biol 15:664–672CrossRefGoogle Scholar
  2. Chen S, Luo H, Chen L, Chen J, Shen J, Zhu W, Chen K, Shen X, Jiang H (2006) An overall picture of SARS coronavirus (SARS-CoV) genome-encoded major proteins: structures, functions and drug development. Curr Pharm Des 12:4539–4553CrossRefGoogle Scholar
  3. Herrmann T, Güntert P, Wüthrich K (2002a) Protein NMR structure determination with automated NOE assignment using the new software CANDID and the torsion angle dynamics algorithm DYANA. J Mol Biol 319:209–227CrossRefGoogle Scholar
  4. Herrmann T, Güntert P, Wüthrich K (2002b) Protein NMR structure determination with automated NOE-identification in NOESY spectra using the new software ATNOS. J Biomol NMR 24:171–189CrossRefGoogle Scholar
  5. Luginbühl P, Güntert P, Billeter M, Wüthrich K (1995) Statistical basis for the use of 13Cα chemical shifts in protein structure determination. J Magn Reson 109:229–233CrossRefGoogle Scholar
  6. Metzler WJ, Constantine KL, Friedrichs MS, Bell AJ, Ernst EG, Lavoie TB, Mueller L (1993) Characterization of the three-dimensional solution structure of human profilin: 1H, 13C, and 15N NMR assignments and global folding pattern. Biochemistry 32:13818–13829CrossRefGoogle Scholar
  7. Muhandiram DR, Farrow NA, Xu G-Y, Smallcombe SH, Kay LE (1993) A gradient 13C NOESY-HSQC experiment for recording NOESY spectra of 13C-labeled proteins dissolved in H2O. J Magn Reson B 102:317–321CrossRefGoogle Scholar
  8. Pastore A, Saudek V (1990) The relationship between chemical shift and secondary structure in proteins. J Magn Reson 90:165–176Google Scholar
  9. Peiris JS, Lai ST, Poon LL, Guan Y, Yam LY, Lim W, Nicholls J, Yee WK, Yan WW, Cheung MT, Cheng VC, Chan KH, Tsang DN, Yung RW, Ng TK, Yuen KY, SARS study group (2003) Coronavirus as a possible cause of severe acute respiratory syndrome. Lancet 361:1319–1325Google Scholar
  10. Prentice E, McAuliffe J, Lu X, Subbarao K, Denison MR (2004) Identification and characterization of severe acute respiratory syndrome coronavirus replicase proteins. J Virol 78:9977–9986CrossRefGoogle Scholar
  11. Saito H (1986) Conformation-dependent 13C chemical shifts: a new means of conformational characterization as obtained by high-resolution solid-state 13C NMR. Magn Reson Chem 24:835–852CrossRefGoogle Scholar
  12. Sattler M, Schleucher J, Griesinger C (1999) Heteronuclear multi-dimensional NMR experiments for the structure determination of proteins in solution employing pulsed field gradients. Prog NMR Spectrosc 34:93–158CrossRefGoogle Scholar
  13. Schiller JJ, Kanjanahaluethai A, Baker SC (1998) Processing of the coronavirus MHV-JHM polymerase polyprotein: identification of precursors and proteolytic products spanning 400 kilodaltons of ORF1A. Virology 242:288–302CrossRefGoogle Scholar
  14. Snijder EJ, Bredenbeek PJ, Dobbe JC, Thiel V, Ziebuhr J, Poon LL, Guan Y, Rozanov M, Spaan WJ, Gorbalenya AE (2003) Unique and conserved features of genome and proteome of SARS-coronavirus, an early split-off from the coronavirus group 2 lineage. J Mol Biol 331:991–1004CrossRefGoogle Scholar
  15. Spera S, Bax A (1991) Empirical correlation between protein backbone conformation and Cα and Cβ 13C nuclear magnetic resonance chemical shifts. J Am Chem Soc 113:5490–5492CrossRefGoogle Scholar
  16. Thiel V, Ivanov KA, Putics A, Hertzig T, Schelle B, Bayer S, Weissbrich B, Snijder EJ, Rabenau H, Doerr HW, Gorbalenya AE, Ziebuhr J (2003) Mechanisms and enzymes involved in SARS coronavirus genome expression. J Gen Virol 84:2305–2315CrossRefGoogle Scholar
  17. Wishart DS, Sykes BD (1994) The 13C chemical-shift index: a simple method for the identification of protein secondary structure using 13C chemical-shift data. J Biomol NMR 4:171–180CrossRefGoogle Scholar
  18. Wishart DS, Bigam CG, Yao J, Abildgaard F, Dyson HJ, Oldfield E, Markley JL, Sykes BD (1995) 1H, 13C and l5N chemical shift referencing in biomolecular NMR. J Biomol NMR 6:135–140CrossRefGoogle Scholar
  19. Wüthrich K (1986) NMR of proteins and nucleic acids. Wiley, New YorkGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  • Amarnath Chatterjee
    • 1
  • Margaret A. Johnson
    • 1
  • Pedro Serrano
    • 1
  • Bill Pedrini
    • 1
  • Kurt Wüthrich
    • 1
    • 2
  1. 1.Department of Molecular BiologyThe Scripps Research InstituteLa JollaUSA
  2. 2.Skaggs Institute for Chemical BiologyThe Scripps Research InstituteLa JollaUSA

Personalised recommendations