American Journal of Criminal Justice

, Volume 40, Issue 1, pp 47–74 | Cite as

Assessing the Predictive Utility of Logistic Regression, Classification and Regression Tree, Chi-Squared Automatic Interaction Detection, and Neural Network Models in Predicting Inmate Misconduct

  • Fawn T. Ngo
  • Ramakrishna Govindu
  • Anurag Agarwal


This study assesses the relative utility of a traditional regression approach - logistic regression (LR) - and three classification techniques - classification and regression tree (CART), chi-squared automatic interaction detection (CHAID), and multi-layer perceptron neural network (MLPNN)—in predicting inmate misconduct. The four models were tested using a sample of inmates held in state and federal prisons and predictors derived from the importation model on inmate adaptation. Multi-validation procedure and multiple evaluation indicators were used to evaluate and report the predictive accuracy. The overall accuracy of the four models varied between 0.60 and 0.66 with an overall AUC range of 0.60–0.70. The LR and MLPNN methods performed significantly better than the CART and CHAID techniques at identifying misbehaving inmates and the CHAID method outperformed the CART approach in classifying defied inmates. The MLPNN method performed significantly better than the LR technique in predicting inmate misconduct among the training samples.


Actuarial risk assessment techniques Comparative statistical techniques Logistic regression Classification and regression tree Chi-squared automatic interaction detection Neural networks Importation model Inmate misconduct 


  1. Abdi, H., Valendin, D., & Edelman, B. (1999). Neural networks (Vol. 124). Newbury Park: Sage.Google Scholar
  2. Aegisdottir, S., White, M. J., Spengler, P. M., Maugherman, A. S., Anderson, L. A., Cook, R. S., et al. (2006). The meta-analysis of clinical judgment project: fifty-six years of accumulated research on clinical versus statistical prediction. The Counseling Psychologist, 34, 341–382.CrossRefGoogle Scholar
  3. Aldrich, J. H., & Nelson, F. D. (1984). Linear probability, logit, and probit models (Vol. 45). Newbury Park: Sage.Google Scholar
  4. Berk, R. A., & Bleich, J. (2013). Statistical procedures for forecasting criminal behavior: a comparative assessment. Criminology and Public Policy, 12, 513–544.CrossRefGoogle Scholar
  5. Bigi, R., Gregori, D., Cortigiani, L., Desideri, A., Chiarotto, F. A., & Toffolo, G. M. (2005). Artificial neural networks and robust Bayesian classifiers for risk stratification following uncomplicated myocardial infartion. International Journal of Cardiology, 101, 481–487.CrossRefGoogle Scholar
  6. Bishop, C. (1995). Neural networks for pattern recognition. New York: Oxford University Press.Google Scholar
  7. Bonta, J. (1996). Risk-needs assessment and treatment. In A. T. Harland (Ed.), Choosing correctional options that work: defining the demand and evaluating the supply (pp. 18–22). Thousand Oaks: Sage.Google Scholar
  8. Breiman, L. (2001). Decision tree forest. Machine Learning, 45, 5–32.CrossRefGoogle Scholar
  9. Breiman, L., Friedman, J. H., Olshen, R. A., & Stone, C. J. (1984). Classification and regression trees. Monterey: Wadsworth and Brooks/Cole.Google Scholar
  10. Brodzinski, J. D., Crable, E. A., & Scherer, R. F. (1994). Using artificial intelligence to model juvenile recidivism patterns. Computers in Human Services, 10, 1–18.CrossRefGoogle Scholar
  11. Bushway, S. D. (2013). Is there any logic to using logit: finding the right tool for the increasingly important job of risk prediction. Criminology and Public Policy, 12, 563–567.CrossRefGoogle Scholar
  12. Byrne, J. M., & Hummer, D. (2007). Myths and realities of prison violence: a review of the evidence. Victims and Offenders An International Journal of Evidence-based Research Policy and Practice, 2, 77–90.Google Scholar
  13. Cao, L., Zhao, J., & Van Dine, S. (1997). Prison disciplinary tickets: a test of the deprivation and importation models. Journal of Crime and Justice, 25, 103–113.CrossRefGoogle Scholar
  14. Carpenter, & Grossberg. (1991). Causal attributions in expert parole decisions. Journal of Personality and Social Psychology, 36, 1501–1511.Google Scholar
  15. Caulkins, J., Cohen, J., Gorr, W., & Wei, J. (1996). Predicting criminal recidivism: a comparison of neural network models with statistical methods. Journal of Crime and Justice, 24, 227–240.CrossRefGoogle Scholar
  16. Clemmer, D. (1940). The prison community. Boston: Christopher.Google Scholar
  17. Coid, J., Yang, M., & Ullrich, S., et al. (2007). Predicting and understanding risk of reoffending: The prisoner cohort study. Research Summary, Ministry of Justice 6.Google Scholar
  18. Dawes, R. M., Faust, D., & Meehl, P. E. (1989). Clinical versus actuarial judgment. Science, 243, 1668–1674.CrossRefGoogle Scholar
  19. Dhami, M. K., Ayton, P., & Lowenstein, G. (2007). Adaption to imprisonment: indigenous or imported? Criminal Justice and Behavior, 34, 1085–1100.CrossRefGoogle Scholar
  20. DiIulio, J. J., Jr. (1987). Governing prisons: a comparative study of correctional management. New York: Free Press.Google Scholar
  21. Egan, J. P. (1975). Signal detection theory and ROC analysis. New York: Academic.Google Scholar
  22. Florio, T., Einfeld, S., & Levy, F. (1994). Neural network and psychiatry: candidate applications in clinical decision making. Australian and New Zealander Psychiatry, 28, 651–666.CrossRefGoogle Scholar
  23. Friedman, J. H. (1999). Stochastic gradient boosting. Stanford: Stanford University.Google Scholar
  24. Gardner, M. J., & Altman, D. G. (1989). Estimating with confidence. In M. J. Gardner & D. G. Altman (Eds.), Statistics with confidence (pp. 6–19). London: British Medical Journal.Google Scholar
  25. Gardner, W., Lidz, C. W., Mulvey, E. P., & Shaw, E. C. (1996). A comparison of actuarial methods for identifying repetitively violent patients with mental illnesses. Law and Human Behavior, 20, 35–48.CrossRefGoogle Scholar
  26. Gendreau, P., Goggin, C. E., & Law, M. A. (1997). Predicting prison misconducts. Criminal Justice and Behavior, 24, 414–431.CrossRefGoogle Scholar
  27. Gendreau, P., Goggin, C. E., & Smith, P. (2002). Is the PCL-R really the “unparelleled” measure of offender-risk? A lesson in knowledge accumulation. Criminal Justice and Behavior, 29, 397–426.CrossRefGoogle Scholar
  28. Glover, A., Nicholson, D., Hemmati, T., Bernfeld, G., & Quinsey, V. (2002). A comparison of predictors of general and violent recidivism among high risk federal offenders. Criminal Justice & Behavior, 29, 235–249.Google Scholar
  29. Goodstein, L., & Wright, K. N. (1989). Inmate adjustment to prison. In L. Goodstein & D. L. MacKenzie (Eds.), The American prison: issues in research and policy (pp. 229–251). NY: Plenum.CrossRefGoogle Scholar
  30. Gottfredson, S. D., & Gottfredson, D. M. (1986). Accuracy of prediction models. In A. Blumstein, J. Cohen, J. Roth, & C. A. Visher (Eds.), Criminal careers and “Career Criminals” (pp. 212–290). Washington: National Academy of Sciences Press.Google Scholar
  31. Gottfredson, S. D., & Moriarty, L. J. (2006). Statistical risk assessment: old problems and new applications. Crime and Delinquency, 52, 178–200.CrossRefGoogle Scholar
  32. Grann, M., & Langstrom, N. (2007). Actuarial assessment of violence risk: to weigh or not to weigh? Criminal Justice and Behavior, 34, 22–36.CrossRefGoogle Scholar
  33. Grove, W. M., & Meehl, P. E. (1996). Comparative efficiency of informal (subjective, impressionistic) and formal (mechanical, algorithm) prediction procedures: the clinical-statistical controversy. Psychology, Public Policy, and Law, 2, 293–323.CrossRefGoogle Scholar
  34. Guerriere, M. R., & Detsky, A. S. (1991). Neural networks: what are they? Annals of Internal Medicine, 115, 906–907.CrossRefGoogle Scholar
  35. Gurney, K. (1997). An Introduction to neural networks. New York: UCL Press.CrossRefGoogle Scholar
  36. Hanson, R. K. (2005). Twenty years of progress in violence risk assessment. Journal of Interpersonal Violence, 20, 212–217.CrossRefGoogle Scholar
  37. Hanson, R.K. & Morton-Bourgon, K.E (2007) The accuracy of recidivism risk assessments for sexual offenders: A meta-analysis. Public Safety and Emergency Preparedness Canada.Google Scholar
  38. Hanson, R. K., & Morton-Bourgon, K. E. (2009). The accuracy of recidivism risk assessments for sexual offenders: a meta-analysis of 118 prediction studies. Psychological Assessment, 21, 1–21.CrossRefGoogle Scholar
  39. Harer, M. D., & Steffensmeier, D. J. (1996). Race and prison violence. Criminology, 34, 323–355.CrossRefGoogle Scholar
  40. Hill, T., & Lewicki, P. (2006). Statistics, methods and application: a comprehensive reference for science, industry, and data mining. Tulsa: StatSoft, Inc.Google Scholar
  41. Hilton, N. Z., Harris, G. T., & Rice, M. E. (2006). Sixty-six years of research on the clinical versus actuarial prediction of violence. The Counseling Psychologist, 34, 400–409.CrossRefGoogle Scholar
  42. Hosmer, D. W., & Lemeshow, S. (1989). Applied logistic regression. New York: Wiley.Google Scholar
  43. Irwin, J. K. (1981). Sociological studies of the impact of long term confinement. In D. A. Ward & K. F. Schoen (Eds.), Confinement in maximum custody (pp. 33–68). Lexington: D.C. Health.Google Scholar
  44. Irwin, J. K., & Cressey, D. (1962). Thieves, convicts, and the inmate culture. Social Problems, 10, 142–155.CrossRefGoogle Scholar
  45. Jiang, S., & Fisher-Giorlando, M. (2002). Inmate misconduct: a test of the deprivation, importation, and situational models. The Prison Journal, 82, 335–358.CrossRefGoogle Scholar
  46. Jones, P. R. (1996). Risk prediction in criminal justice. In A. T. Harland (Ed.), Choosing correctional options that work: defining the demand and evaluating the supply (pp. 33–68). Thousand Oaks: Sage.Google Scholar
  47. Kass, G. V. (1980). An exploratory technique for investigating large quantities of categorical data. Applied Statistics, 29, 119–127.CrossRefGoogle Scholar
  48. Kroner, D. G., & Mills, J. F. (2001). The accuracy of five appraisal risk instruments in predicting institutional misconduct and new convictions. Criminal Justice and Behavior, 28, 471–489.CrossRefGoogle Scholar
  49. Liu, Y. Y., Yang, M., Ramsay, M., Li, X. S., & Coid, J. W. (2011). A comparison of logistic regression, classification and regression tree, and neural networks models in predicting violent re-offending. Journal of Quantitative Criminology, 27, 547–573.CrossRefGoogle Scholar
  50. Loh, W. Y., & Shih, Y. S. (1997). Split selection methods for classification trees. Statistica Sinica, 7, 815–840.Google Scholar
  51. Menzies, R., Webster, S. D., McMain, S., Staley, S., & Scaglione, R. (1994). The dimensions of dangerousness revisited. Law and Human Behavior, 18, 1–28.CrossRefGoogle Scholar
  52. Minsky, M., & Papert, S. (1969). Perceptrons. Cambridge: MIT Press.Google Scholar
  53. Mossman, D. (1994). Assessing prediction of violence: being accurate about accuracy. Journal of Consulting and Clinical Psychology, 62, 783–792.CrossRefGoogle Scholar
  54. Neuilly, M., Zgoba, K. M., Tita, G. E., & Lee, S. S. (2011). Predicting recidivism in homicide offenders using classification tree analysis. Homicide Studies, 15, 154–176.Google Scholar
  55. Ning, G. M., Su, J., Li, Y. Q., Wang, X. Y., Li, C. H., & Yan, W. M. (2006). Artificial neural network base model for cardiovascular risk stratification in hypertension. Medical and Biological Engineering and Computing, 44, 202–208.CrossRefGoogle Scholar
  56. Palocsay, S. W., Wang, P., & Brookshire, R. G. (2000). Predicting criminal recidivism using neural networks. Socio-Economic Planning Sciences, 34, 271–284.CrossRefGoogle Scholar
  57. Paterline, B. A., & Petersen, D. M. (1999). Structural and social psychological determinants of prisonization. Journal of Crime and Justice, 27, 427–441.CrossRefGoogle Scholar
  58. Perlich, C., Provost, F., & Simonof, J. (2003). Tree induction vs. logistic regression: a learning curve analysis. Journal of Machine Learning Research, 4, 211–255.Google Scholar
  59. Price, R. K., Spitznagel, E. L., Downey, T. J., Meyer, D. J., Risk, N. K., & El-Ghazzawy, O. G. (2000). Applying artificial neural network models to clinical decision making. Psychological Assessment, 12, 40–51.CrossRefGoogle Scholar
  60. Rice, M. E., & Harris, G. T. (1995). Violent recidivism: assessing predictive validity. Journal of Consulting and Clinical Psychology, 63, 737–748.CrossRefGoogle Scholar
  61. Ridgeway, G. (2013). Linking prediction and prevention. Criminology and Public Policy, 12, 545–550.CrossRefGoogle Scholar
  62. Ripley, B. D. (1996). Pattern recognition and neural networks. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  63. Rokach, L., & Maimon, O. (2008). Data mining with decision trees: theory and application. Hackensack: World Scientific Publishing.Google Scholar
  64. Rosenfeld, B., & Lewis, C. (2005). Assessing violent risk in stalking cases: a regression tree approach. Law and Human Behavior, 29, 343–357.CrossRefGoogle Scholar
  65. Rumelhart, D. E., & McClelland, J. L. (1986). Parallel distributed processing (Vol. 1). Cambridge: MIT Press.Google Scholar
  66. Rumelhart, D. E., & McClelland, J. L. (1988). Parallel distributed processing (Vol. 1 and 2). Cambridge: MIT Press.Google Scholar
  67. Seymour, J. (1977). Niches in prisons. In H. Toch (Ed.), Living in prison: the ecology of survival (pp. 18–22). New York: Free Press.Google Scholar
  68. Silver, E., Smith, W. R., & Banks, S. (2000). Constructing actuarial devices for predicting recidivism: a comparison of methods. Criminal Justice and Behavior, 27, 733–764.CrossRefGoogle Scholar
  69. Singh, J. P., & Fazel, S. (2010). Forensic risk assessment: a metareview. Criminal Justice and Behavior, 37, 965–988.CrossRefGoogle Scholar
  70. Singh, J. P., Grann, M., & Fazel, S. (2011). A comparative study of violence risk assessment tools: a systematic review and metaregression analysis of 68 studies and 25, 980 participants. Clinical Psychology Review. doi: doi:10.1016/j.cpr.2010.11.009.Google Scholar
  71. Snyder, H. N. (2011). Patterns & Trends: Arrests in the United States, 1980–2009. Bureau of Justice Statistics: U.S. Department of Justice.Google Scholar
  72. Sorensen, J., Wrinkle, R., & Gutierrez, A. (1998). Patterns of rule-violating behaviors and adjustment to incarceration among murderers. The Prison Journal, 78, 222–231.CrossRefGoogle Scholar
  73. Stalans, L. J., Yarnold, P. R., Seng, M., Olson, D. E., & Repp, M. (2004). Identifying three types of violent offenders and predicting violent recidivism while on probation: a classification tree analysis. Law and Human Behavior, 28, 253–271.CrossRefGoogle Scholar
  74. StatSoft Inc (2008) Data mining, predictive analytics, statistics, StatSoft electronic textbook.
  75. Steadman, H. J., Silver, E., Monahan, J., Appelbaum, P. S., Robbins, P. C., & Mulvey, E. P. (2000). A classification tree approach to the development of actuarial violence risk assessment tools. Law and Human Behavior, 24, 83–100.CrossRefGoogle Scholar
  76. Steinke, P. (1991). Using situational factors to predict types of prison violence. Journal of Offender Rehabilitation, 17, 119–132.CrossRefGoogle Scholar
  77. Sykes, G. M. (1958). The society of captives. Princeton: Princeton University Press.Google Scholar
  78. Thomas, S., & Leese, M. (2003). A green-fingered approach can improve the clinical utility of violence risk assessment tools. Criminal Behavior and Mental Health, 13, 153–158.CrossRefGoogle Scholar
  79. Thomas, S., Leese, M., Walsh, E., McCrone, P., Moran, P., & Burns, T. (2005). A comparison of statistical methods in predicting violence in psychotic illness. Comprehensive Psychiatry, 46, 296–303.CrossRefGoogle Scholar
  80. Toch, H. (1977). Living in prison: the ecology of survival. New York: Free Press.Google Scholar
  81. Toch, H., & Adams, K. (1986). Pathology and disruptiveness among prison inmates. Journal of Research in Crime and Delinquency, 23, 7–21.CrossRefGoogle Scholar
  82. Tu, J. V. (1996). Advantages and disadvantages of using artificial neural networks versus logistic regression for predicting medical outcomes. Journal of Clinical Epidemiology, 9, 1225–1231.CrossRefGoogle Scholar
  83. Wallace, J. M., & Bachman, J. G. (1991). Explaining racial/ethnic differences in adolescent drug use: the impact of background and lifestyles. Social Forces, 38, 333–354.Google Scholar
  84. White, H. (1989). Some asymptotic results for learning in single hidden-layer feedforward network models. Journal of the American Statistical Society, 84, 1003–1013.CrossRefGoogle Scholar
  85. Wooldredge, J. D. (1991). Correlates of deviant behavior among inmates of U.S. correctional facilities. Journal of Crime and Justice, 14, 1–25.CrossRefGoogle Scholar
  86. Wright, K. N. (1991). A study of individual, environmental, and interactive effects in explaining adjustment to prison. Justice Quarterly, 8, 217–242.CrossRefGoogle Scholar
  87. Yan, L., Dodier, R., Mozer, M.C., & Wolniewicz, R (2003) Optimizing classifier performance via the Wilcoxon-Mann–Whitney statistics. Proceedings of the International Conference on Machine Learning. Google Scholar
  88. Yang, M., Liu, Y.Y. & Coid, J.W (2010) Applying neural networks and classification tree models to the classification of serious offenders and the prediction of recidivism. Research summary, Ministry of Justice, UK, available online at

Copyright information

© Southern Criminal Justice Association 2014

Authors and Affiliations

  • Fawn T. Ngo
    • 1
  • Ramakrishna Govindu
    • 2
  • Anurag Agarwal
    • 2
  1. 1.College of Arts and SciencesUniversity of South Florida Sarasota-ManateeSarasotaUSA
  2. 2.College of BusinessUniversity of South Florida Sarasota-ManateeSarasotaUSA

Personalised recommendations