Advertisement

The Indian Journal of Pediatrics

, Volume 83, Issue 10, pp 1175–1187 | Cite as

Approach to the Diagnosis of Overgrowth Syndromes

  • Mohnish SuriEmail author
Review Article

Abstract

Overgrowth syndromes comprise a group of disorders associated with excessive growth and other features such as facial dysmorphism, developmental delay or intellectual disability, congenital anomalies, neurological problems and an increased risk of neoplasia. Recent advances in understanding the genetic basis of overgrowth syndromes has resulted in a move away from clinical classification to molecular classification of overgrowth syndromes. This review provides a structured clinical approach to patients with this group of disorders and includes most of the currently known overgrowth syndromes.

Keywords

Overgrowth Syndrome Diagnosis Investigations Tumor risk 

Notes

Compliance with Ethical Standards

Conflict of Interest

None.

Source of Funding

None.

References

  1. 1.
    Lapunzina P Risk of tumorigenesis in overgrowth syndromes: a comprehensive review. Am J Med Genet C Semin Med Genet. 2005;137C:53–71.CrossRefPubMedGoogle Scholar
  2. 2.
    Hennekam RCM, Allanson JE, Krantz ID, editors. Gorlin’s syndromes of the head and neck. 5th ed. New York: Oxford University Press; 2010. p. 471–516.Google Scholar
  3. 3.
    Tatton-Brown K, Weksberg R. Molecular mechanisms of childhood overgrowth. Am J Med Genet Part C Semin Med Genet. 2013;163C:71–5.CrossRefPubMedGoogle Scholar
  4. 4.
    Tatton-Brown K, Rahman N. Sotos syndrome. Eur J Hum Genet. 2007;15:264–71.CrossRefPubMedGoogle Scholar
  5. 5.
    Tatton-Brown N, Murray A, Hanks S, et al. Weaver syndrome and EZH2 mutations: clarifying the clinical phenotype. Am J Med Genet A. 2013;161A:2972–80.CrossRefPubMedGoogle Scholar
  6. 6.
    Shaw AC, van Balkom ID, Bauer M, et al. Phenotype and natural history in Marshall-Smith syndrome. Am J Med Genet A. 2010;152A:2714–26.CrossRefPubMedGoogle Scholar
  7. 7.
    Malan V, Rajan D, Thomas S, et al. Distinct effects of allelic NFIX mutations on nonsense-mediated mRNA decay engender either a Sotos-like or a Marshall-Smith syndrome. Am J Hum Genet. 2010;87:189–98.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Klaassens M, Morrogh D, Rosser EM, et al. Malan syndrome: sotos-like overgrowth with de novo NFIX sequence variants and deletions in six new patients and a review of the literature. Eur J Hum Genet. 2015;23:610–5.CrossRefPubMedGoogle Scholar
  9. 9.
    Elliott M, Maher ER. Beckwith-Wiedemann syndrome. J Med Genet. 1994;31:560–4.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Choufani S, Shuman C, Weksberg R. Molecular findings in Beckwith-Wiedemann syndrome. Am J Med Genet Part C Semin Med Genet. 2013;163C:131–40.CrossRefPubMedGoogle Scholar
  11. 11.
    Brioude F, Lacoste A, Netchine I, et al. Beckwith-Wiedemann syndrome: growth pattern and tumor risk according to molecular mechanism, and guidelines for tumor surveillance. Horm Res Paediatr. 2013;80:457–65.CrossRefPubMedGoogle Scholar
  12. 12.
    Cottereau E, Mortemousque M, Moizard M-P, et al. Phenotypic spectrum of Simpson-Golabi-Behmel syndrome in a series of 42 cases with a mutation in GPC3 and review of the literature. Am J Med Genet Part C Semin Med Genet. 2013;163C:92–105.CrossRefPubMedGoogle Scholar
  13. 13.
    Alessandri JL, Cuillier F, Ramful D, et al. Perlman syndrome: report, prenatal findings and review. Am J Med Genet A. 2008;146A:2532–7.CrossRefPubMedGoogle Scholar
  14. 14.
    Morris M, Astuti D, Maher ER. Perlman syndrome: overgrowth, Wilms tumor predisposition and DIS3L2. Am J Med Genet Part C Semin Med Genet. 2013;163C:106–13.CrossRefPubMedGoogle Scholar
  15. 15.
    Douglas J, Cilliers D, Coleman K, et al. Mutations in RNF135, a gene within the NF1 microdeletion region, cause phenotypic abnormalities including overgrowth. Nat Genet. 2007;39:963–5.CrossRefPubMedGoogle Scholar
  16. 16.
    Mensink KA, Ketterling RP, Flynn HC, et al. Connective tissue dysplasia in five new patients with NF1 microdeletions: further expansion of phenotype and review of the literature. J Med Genet. 2006;43:e8.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    De Raedt T, Brems H, Wolkenstein P, et al. Elevated risk for MPNST in NF1 microdeletion patients. Am J Hum Genet. 2003;72:1288–92.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Tatton-Brown K, Seal S, Ruark E, et al. Mutations in the DNA methyltransferase gene DNMT3A cause an overgrowth syndrome with intellectual disability. Nat Genet. 2014;46:385–8.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Nevo S, Zeltzer M, Benderly A, Levy J. Evidence for autosomal recessive inheritance in cerebral gigantism. J Med Genet. 1974;11:158–65.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Giunta C, Randolph A, Al-Gazali LI, Brunner HG, Kraenzlin ME, Steinmann B. Nevo syndrome is allelic to the kyphoscoliotic type of the Ehlers-Danlos syndrome (EDS VIA). Am J Med Genet A. 2005;133A:158–64.CrossRefPubMedGoogle Scholar
  21. 21.
    Blumenthal GM, Dennis PA. PTEN hamartoma tumor syndromes. Eur J Hum Genet. 2008;16:1289–300.CrossRefPubMedGoogle Scholar
  22. 22.
    Mester J, Eng C. When overgrowth bumps into cancer: the PTEN-opathies. Am J Med Genet Part C Semin Med Genet. 2013;163C:114–21.CrossRefPubMedGoogle Scholar
  23. 23.
    Smpokou P, Fox VL, Tan WH. PTEN hamartoma tumour syndrome: early tumour development in children. Arch Dis Child. 2015;100:34–7.CrossRefPubMedGoogle Scholar
  24. 24.
    Terracciano A, Chiurazzi P, Neri G. Fragile X syndrome. Am J Med Genet C Semin Med Genet. 2005;137C:32–7.CrossRefPubMedGoogle Scholar
  25. 25.
    Clayton-Smith J, Kerr B, Brunner H, et al. Macrocephaly with cutis marmorata, haemangioma and syndactyly–a distinctive overgrowth syndrome. Clin Dysmorphol. 1997;6:291–302.CrossRefPubMedGoogle Scholar
  26. 26.
    Mirzaa GM, Conway RL, Gripp KW, et al. Megalencephaly-capillary malformation (MCAP) and megalencephaly-polydactyly-polymicrogyria-hydrocephalus (MPPH) syndromes: two closely related disorders of brain overgrowth and abnormal brain and body morphogenesis. Am J Med Genet A. 2012;158A:269–91.CrossRefPubMedGoogle Scholar
  27. 27.
    Rivière JB, Mirzaa GM, O’Roak BJ, et al. De novo germline and postzygotic mutations in AKT3, PIK3R2 and PIK3CA cause a spectrum of related megalencephaly syndromes. Nat Genet. 2012;44:934–40.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Mirzaa GM, Rivière JB, Dobyns WB. Megalencephaly syndromes and activating mutations in the PI3K-AKT pathway: MPPH and MCAP. Am J Med Genet C Semin Med Genet. 2013;163C:122–30.CrossRefPubMedGoogle Scholar
  29. 29.
    Sapp JC, Turner JT, van de Kamp JM, van Dijk FS, Lowry RB, Biesecker LG. Newly delineated syndrome of congenital lipomatous overgrowth, vascular malformations, and epidermal nevi (CLOVE syndrome) in seven patients. Am J Med Genet A. 2007;143A:2944–58.CrossRefPubMedGoogle Scholar
  30. 30.
    Kurek KC, Luks VL, Ayturk UM, et al. Somatic mosaic activating mutations in PIK3CA cause CLOVES syndrome. Am J Hum Genet. 2012;90:1108–15.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Keppler-Noreuil KM, Sapp JC, Lindhurst MJ, et al. Clinical delineation and natural history of the PIK3CA-related overgrowth spectrum. Am J Med Genet A. 2014;164A:1713–33.CrossRefPubMedGoogle Scholar
  32. 32.
    Lindhurst MJ, Sapp JC, Teer JK, et al. A mosaic activating mutation in AKT1 associated with the Proteus syndrome. N Engl J Med. 2011;365:611–9.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Cohen MM Jr. Proteus syndrome review: molecular, clinical, and pathologic features. Clin Genet. 2014;85:111–9.Google Scholar
  34. 34.
    Hoyme HE, Seaver LH, Jones KL, Procopio F, Crooks W, Feingold M. Isolated hemihyperplasia (hemihypertrophy): report of a prospective multicenter study of the incidence of neoplasia and review. Am J Med Genet. 1998;79:274–8.CrossRefPubMedGoogle Scholar
  35. 35.
    Dempsey-Robertson M, Wilkes D, Stall A, Bush P. Incidence of abdominal tumors in syndromic and idiopathic hemihypertrophy/isolated hemihyperplasia. J Pediatr Orthop. 2012;32:322–6.CrossRefPubMedGoogle Scholar
  36. 36.
    Clericuzio CL, Martin RA. Diagnostic criteria and tumor screening for individuals with isolated hemihyperplasia. Genet Med. 2009;11:220–2.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Wilkens A, Liu H, Park K, et al. Novel clinical manifestations in Pallister-Killian syndrome: comprehensive evaluation of 59 affected individuals and review of previously reported cases. Am J Med Genet A. 2012;158A:3002–17.CrossRefPubMedGoogle Scholar
  38. 38.
    Izumi K, Krantz ID. Pallister-Killian syndrome. Am J Med Genet C Semin Med Genet. 2014;166C:406–13.CrossRefPubMedGoogle Scholar
  39. 39.
    Mauceri L, Sorge G, Incorpora G, Pavone L. Pallister-Killian syndrome: case report with pineal tumor. Am J Med Genet. 2000;95:75–8.CrossRefPubMedGoogle Scholar
  40. 40.
    Tatton-Brown K, Pilz DT, Orstavik KH, et al. 15q overgrowth syndrome: a newly recognized phenotype associated with overgrowth, learning difficulties, characteristic facial appearance, renal anomalies and increased dosage of distal chromosome 15q. Am J Med Genet A. 2009;149A:147–54.CrossRefPubMedGoogle Scholar
  41. 41.
    Phelan K, McDermid HE. The 22q13.3 deletion syndrome (Phelan-McDermid syndrome). Mol Syndromol. 2012;2:186–201.PubMedGoogle Scholar
  42. 42.
    Derry C, Temple IK, Venkat-Raman K. A probable case of familial Weaver syndrome associated with neoplasia. J Med Genet. 1999;36:725–78.PubMedPubMedCentralGoogle Scholar
  43. 43.
    Maher ER, Brueton LA, Bowdin SC, et al. Beckwith-Wiedemann syndrome and assisted reproduction technology (ART). J Med Genet. 2003;40:62–4.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Halliday J, Oke K, Breheny S, Algar E. J Amor D. Beckwith-Wiedemann syndrome and IVF: a case-control study. Am J Hum Genet. 2004;75:526–8.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Maher ER. Imprinting and assisted reproductive technology. Hum Mol Genet. 2005;14 Spec No 1:R133-8.Google Scholar
  46. 46.
    Weksberg R, Shuman C, Caluseriu O, et al. Discordant KCNQ1OT1 imprinting in sets of monozygotic twins discordant for Beckwith-Wiedemann syndrome. Hum Mol Genet. 2002;11:1317–25.CrossRefPubMedGoogle Scholar
  47. 47.
    Bliek J, Alders M, Maas SM, et al. Lessons from BWS twins: complex maternal and paternal hypomethylation and a common source of haematopoietic stem cells. Eur J Hum Genet. 2009;17:1625–34.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Pham T, Steele J, Stayboldt C, Chan L, Benirschke K. Placental mesenchymal dysplasia is associated with high rates of intrauterine growth restriction and fetal demise: a report of 11 new cases and a review of the literature. Am J Clin Pathol. 2006;126:67–78.CrossRefPubMedGoogle Scholar
  49. 49.
    Matsuo T, Ihara K, Ochiai M, et al. Hyperinsulinemic hypoglycemia of infancy in Sotos syndrome. Am J Med Genet A. 2013;161A:34–7.CrossRefPubMedGoogle Scholar
  50. 50.
    Cole TR, Hughes HE. Sotos syndrome: a study of the diagnostic criteria and natural history. J Med Genet. 1994;31:20–32.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Jamis-Dow CA, Turner J, Biesecker LG, Choyke PL. Radiologic manifestations of Proteus syndrome. Radiographics. 2004;24:1051–68.CrossRefPubMedGoogle Scholar
  52. 52.
    Alomari AI. Characterization of a distinct syndrome that associates complex truncal overgrowth, vascular, and acral anomalies: a descriptive study of 18 cases of CLOVES syndrome. Clin Dysmorphol. 2009;18:1–7.CrossRefPubMedGoogle Scholar
  53. 53.
    Alomari AI, Chaudry G, Rodesch G, et al. Complex spinal-paraspinal fast-flow lesions in CLOVES syndrome: analysis of clinical and imaging findings in 6 patients. AJNR Am J Neuroradiol. 2011;32:1812–7.CrossRefPubMedGoogle Scholar
  54. 54.
    Scott RH, Douglas J, Baskcomb L, et al. Methylation-specific multiplex ligation-dependent probe amplification (MS-MLPA) robustly detects and distinguishes 11p15 abnormalities associated with overgrowth and growth retardation. J Med Genet. 2008;45:106–13.CrossRefPubMedGoogle Scholar
  55. 55.
    Lam WW, Hatada I, Ohishi S, et al. Analysis of germline CDKN1C (p57KIP2) mutations in familial and sporadic Beckwith-Wiedemann syndrome (BWS) provides a novel genotype-phenotype correlation. J Med Genet. 1999;36:518–23.PubMedPubMedCentralGoogle Scholar
  56. 56.
    Manasse BF, Lekgate N, Pfaffenzeller WM, de Ravel TJ. The Pallister-Killian syndrome is reliably diagnosed by FISH on buccal mucosa. Clin Dysmorphol. 2000;9:163–5.CrossRefPubMedGoogle Scholar
  57. 57.
    Loveday C, Tatton-Brown K, Clarke M, et al. Mutations in the PP2A regulatory subunit B family genes PPP2R5B, PPP2R5C and PPP2R5D cause human overgrowth. Hum Mol Genet. 2015;24:4775–9.CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    GraciaBouthelier R, Lapunzina P. Follow-up and risk of tumors in overgrowth syndromes. J Pediatr Endocrinol Metab. 2005;18:S1227–35.Google Scholar
  59. 59.
    Partington MW, Robinson H, Laing S, Turner G. Mortality in the fragile X syndrome: preliminary data. Am J Med Genet. 1992;43:120–3.CrossRefPubMedGoogle Scholar
  60. 60.
    Schultz-Pedersen S, Hasle H, Olsen JH, Friedrich U. Evidence of decreased risk of cancer in individuals with fragile X. Am J Med Genet. 2001;103:226–30.CrossRefPubMedGoogle Scholar
  61. 61.
    Farach A, Farach LS, Paulino AC. Therapeutic challenges in treating patients with fragile X syndrome and neoplasia. Pediatr Blood Cancer. 2013;60:E153–6.PubMedGoogle Scholar
  62. 62.
    Pasmant E, Sabbagh A, Spurlock G, et al. NF1 microdeletions in neurofibromatosis type 1: from genotype to phenotype. Hum Mutat. 2010;31:E1506–18.CrossRefPubMedGoogle Scholar
  63. 63.
    Scott RH, Walker L, Olsen ØE, et al. Surveillance for Wilms tumour in at-risk children: pragmatic recommendations for best practice. Arch Dis Child. 2006;91:995–9.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Dr. K C Chaudhuri Foundation 2015

Authors and Affiliations

  1. 1.Nottingham Regional Clinical Genetics ServiceNottingham University Hospitals NHS TrustNottinghamUK

Personalised recommendations