The Indian Journal of Pediatrics

, Volume 81, Issue 7, pp 722–725

A de novo Chromosomal Abnormality in Cri du Chat Syndrome

  • Shunchang C Sun
  • Fuwei W. Luo
  • Zhiming M. Zhou
  • Yunsheng S. Peng
  • Huiwen W. Song
Original Article
  • 317 Downloads

Abstract

Objective

To find the length and location of the deletions in the short arm of chromosome 5 in one case of Cri du Chat syndrome using oligo array comparative genomic hybridization.

Methods

Metaphase chromosomes were prepared from peripheral blood lymphocyte cultures using standard cytogenetic protocols. Chromosomal analysis was done in G-banded metaphases. Oligo array comparative genomic hybridization and fluorescence in situ hybridization were performed by the commercially available kits.

Results

Oligonucleotide array comparative genomic hybridization (CGH) analysis revealed a 23.263 Mb deletion at region 5p14.2-->qter, combined with a duplication of 14.602 Mb in size in the area 12p13.1-->pter. Chromosomal aberrations were confirmed by fluorescence in situ hybridization. The male neonate with Cri du Chat syndrome had an unbalanced translocation which was inherited from his father who was a balanced carrier with a karyotype 46, XY, t (5; 12) (p14.2; p13.1).

Conclusions

This report shows the clinical utility of the oligonucleotide array in the detection of submicroscopic chromosomal aberrations, thus improving the molecular diagnosis of Cri du Chat syndrome.

Keywords

Cri du Chat syndrome Comparative genomic hybridization 5p deletion 12p duplication 

References

  1. 1.
    Marignier S, Lesca G, Marguin J, Bussy G, Sanlaville D, des Portes V. Childhood apraxia of speech without intellectual deficit in a patient with cri du chat syndrome. Eur J Med Genet. 2012;55:433–6.PubMedCrossRefGoogle Scholar
  2. 2.
    Basinko A, Giovannucci Uzielli ML, Scarselli G, Priolo M, Timpani G, De Braekeleer M. Clinical and molecular cytogenetic studies in ring chromosome 5: Report of a child with congenital abnormalities. Eur J Med Genet. 2012;55:112–6.PubMedCrossRefGoogle Scholar
  3. 3.
    Manukjan G, Tauscher M, Ripperger T, Schwarzer A, Schlegelberger B, Steinemann D. Induced G1 phase arrest of fast-dividing cells improves the quality of genomic profiles generated by array-CGH. Biotechniques. 2012;53:245–8.PubMedCrossRefGoogle Scholar
  4. 4.
    Valduga M, Philippe C, Bach Segura P, Thiebaugeorges O, Miton A, Beri M, et al. A retrospective study by oligonucleotide array-CGH analysis in 50 fetuses with multiple malformations. Prenat Diagn. 2010;30:333–41.PubMedGoogle Scholar
  5. 5.
    Barber JC, Huang S, Bateman MS, Collins AL. Transmitted deletions of medial 5p and learning difficulties; Does the cadherin cluster only become penetrant when flanking genes are deleted? Am J Med Genet A. 2011;155A:2807–15.PubMedCrossRefGoogle Scholar
  6. 6.
    Torun D, Bahce M, Alanbay I, Guran S, Baser I. Prenatal diagnosis of Cri-du chat syndrome following high maternal serum human chorionic gonodotrophin and choroid plexus cysts. Prenat Diagn. 2009;29:536–7.PubMedCrossRefGoogle Scholar
  7. 7.
    Mosca AL, Callier P, Leheup B, Marle N, Jalloul M, Coffinet L, et al. Fortuitous FISH diagnosis of an interstitial microdeletion (5)(q31.1q31.2) in a girl suspected to present a cri-du-chat syndrome. Am J Med Genet A. 2007;143A:1342–7.PubMedCrossRefGoogle Scholar
  8. 8.
    Vlckova M, Trkova M, Zemanova Z, Hancarova M, Novotna D, Raskova D, et al. Mechanism and genotype-phenotype correlation of two proximal 6q deletions characterized using mBAND, FISH, array CGH, and DNA sequencing. Cytogenet Genome Res. 2012;136:15–20.PubMedCrossRefGoogle Scholar
  9. 9.
    Chui JV, Weisfeld-Adams JD, Tepperberg J, Mehta L. Clinical and molecular characterization of chromosome 7p22.1 microduplication detected by array CGH. Am J Med Genet A. 2011;155A:2508–11.PubMedCrossRefGoogle Scholar
  10. 10.
    Hostetter G, Kim SY, Savage S, Gooden GC, Barrett M, Zhang J, et al. Random DNA fragmentation allows detection of single-copy, single-exon alterations of copy number by oligonucleotide array CGH in clinical FFPE samples. Nucleic Acids Res. 2010;38:e9.PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    Hills C, Moller JH, Finkelstein M, Lohr J, Schimmenti L. Cri du chat syndrome and congenital heart disease: A review of previously reported cases and presentation of an additional 21 cases from the Pediatric Cardiac Care Consortium. Pediatrics. 2006;117:e924–7.PubMedCrossRefGoogle Scholar
  12. 12.
    South ST, Swensen JJ, Maxwell T, Rope A, Brothman AR, Chen Z. A new genomic mechanism leading to cri-du-chat syndrome. Am J Med Genet A. 2006;140:2714–20.PubMedCrossRefGoogle Scholar
  13. 13.
    Hung CC, Lin CH, Lin SY, Shin JC, Lee CN, Su YN. Prenatal diagnosis of a fetus with a de novo trisomy 12p by array-comparative genomic hybridization (array-CGH). Gene. 2012;495:178–82.PubMedCrossRefGoogle Scholar

Copyright information

© Dr. K C Chaudhuri Foundation 2013

Authors and Affiliations

  • Shunchang C Sun
    • 1
  • Fuwei W. Luo
    • 2
  • Zhiming M. Zhou
    • 1
  • Yunsheng S. Peng
    • 1
  • Huiwen W. Song
    • 1
  1. 1.Department of Clinical Laboratory, Shenzhen Baoan HospitalSouthern Medical UniversityShenzhenChina
  2. 2.Center of Prenatal Diagnosis, Shenzhen Maternal and Child HospitalSouthern Medical UniversityShenzhenChina

Personalised recommendations